Discontinuous Grammar: A
dependency-based model of human parsing
and language learning

dr.ling.merc. dissertation
submitted to
the Copenhagen Business School
in December 2005

Matthias Trautner Kromann
Center for Computational Modelling of Language
Department of Computational Linguistics
Copenhagen Business School
http://www.id.cbs.dk/~mtk
Discontinuous Grammar: A dependency-based model of human parsing and language learning

Matthias Trautner Kromann
Copenhagen Business School
Copyright © 2002–2005 by Matthias Trautner Kromann.

This manuscript has been submitted as a dr.ling.merc. dissertation at the Copenhagen Business School in December 2005. The manuscript should not be copied or distributed without the written consent of the author.

The text was typeset in Palatino with LaTeX2e. The figures were created with the PostScript library PSMath and the treebank tool DTAG.

Matthias Trautner Kromann <mtk.id@cbs.dk>
To the memory of my father
Hans-Peder Kromann

οὖ τοι ἐτὶ δηρόν γε φίλης ἀπὸ πατρίδος αἰής
ἐσσεται, οὐδὲ ἐπὶ πέρ τε σιδήρεα δέσματ’ ἐχει;
φράσσεται ὡς κε νέηται, ἐπεὶ πολυμήχανος εἶσιν.

The Odyssey, I, 203–5
Matthias Trautner Kromann (born 1972) received a BA in mathematics and physics from Roskilde University in 1994, an MA in mathematics from the University of Pennsylvania in 1997, and an MA in computational linguistics from the Copenhagen Business School in 1999. He was a Ph.D. student at the Department of Computational Linguistics at the Copenhagen Business School from 1999–2002. Since 2002, he has been employed as an assistant research professor at the Center for Computational Modelling of Language at the Department of Computational Linguistics at the Copenhagen Business School.
Contents

<table>
<thead>
<tr>
<th>Contents</th>
<th>vii</th>
</tr>
</thead>
<tbody>
<tr>
<td>Preface</td>
<td>xi</td>
</tr>
</tbody>
</table>

I Introduction

1 Motivation and overview

1.1 Human communication as an optimization problem

1.2 Optimization from a computational point of view

1.3 Serial parsing with repair based on local search

1.4 How the choice of analysis space affects parsing

1.5 Summary

II Syntax formalism

2 The analysis space: how lexemes license edges in the graph

2.1 Dependency graphs

2.2 The lexicon: multiple inheritance with defaults

2.3 Deep trees: complements and adjuncts

2.4 Surface trees: landing sites and word order

2.5 Fillers and gapping: secondary dependencies

2.6 Summary

3 The cost measure: weighted local constraints

3.1 Cost functions and cost operators

3.2 Examples of cost functions
7.5 Evaluation of the DG system 333
7.6 Summary .. 339

V Conclusion 341

8 Conclusion 343
 8.1 The current state of the field 343
 8.2 What has been achieved 345
 8.3 Doctoral requirements 350

VI Appendices 353

A DG language model 355
 A.1 Language model .. 355
 A.2 Submodels .. 355
 A.3 Distributions ... 363

B Danish summary 387

Bibliography 395

Index 410
Preface

In my view, the purpose of computational linguistics is to make computational models of how humans speak with each other, and use these models to create machines that can help us with tedious language-related tasks, such as machine translation, speech recognition, and dialogue systems. That is, I view computational linguistics as a cognitive science with important technological applications.

This view may differ slightly from the majority view among computational linguists today. Undoubtedly, most of us would be delighted if our processing models reflected the way humans process language. But in practice, we mostly care about how promising our models seem from an applied point of view, and pay little attention to cognitive aspects, even when psycholinguistic evidence proves our models wrong. For example, we know chart parsers are incompatible with our knowledge about garden-path sentences, but they still play a dominant role in parsing because they seem to work extremely well in practical applications. As long as our models result in good technology, cognitive plausibility isn’t much of a concern to us. And frankly, why bother?

The main reason for bothering is that all the engineering problems of our science have been solved once already, in the human brain, and there is a real risk that nature’s solution is the only viable solution if we want to solve all the problems in the field. So when our artificial processing models depart from what humans do, we should at least think carefully about the differences: How does our artificial solution differ from nature’s solution, and why didn’t nature come up with our solution? Did we make some implicit theoretical assumptions that work well in a constrained setting, but fail in a more general setting, thereby hindering long-term progress? Can we find clues about a better solution by trying to reverse-engineer
human language processing?

In this dissertation, I will argue that, even with the relatively restricted knowledge we have about human parsing today, taking a principled cognitive and theoretical view will reveal some problematic assumptions about parsing and syntax formalisms, and lead to a revision of our assumptions which can be used to construct parsers and syntax formalisms that are good candidates for cognitive models of parsing and at the same time a promising basis for parsing technology. In particular, I will argue that:

- Rather than viewing parsing as a satisfaction problem, we should view parsing as an optimization problem and think of grammars as utility measures that encode a speaker’s preferences with respect to the choice of analyses, possibly defined indirectly by means of probability measures.
- Rather than considering the problem of parsing pre-tokenized, sentence-sized input, we should consider the more general problem of parsing unsegmented, discourse-sized input where almost-linear time complexity seems to be a prerequisite for computational feasibility.
- Rather than looking for parsing and generation algorithms that are guaranteed to find a globally optimal analysis, we should look for almost-linear heuristic parsing and generation algorithms — such as serial parsing with repair based on local search — that usually succeed in finding a globally optimal analysis, but fail for some constructions (eg, garden-paths).
- Rather than ensuring computational feasibility by restricting the linguistic expressiveness of the grammars and the probabilistic language models, we should utilize the computational complexity we gain from a heuristic parsing algorithm to formulate linguistically adequate grammars and probabilistic language models.
- Rather than using phrase-structure based theories, where the edit distance between different analyses of ambiguous phrases makes repair operations unnecessarily complex, we should use dependency-based theories where the edit distance and the complexity is low.
- Rather than ignoring psycholinguistics, we should try to improve our parsing models by comparing them with the psycholinguistic evidence about human language processing.

There are many excellent linguistic theories, and I do not wish to claim
that the theory presented here is the only “true” theory — a meaningless claim, since theories are always provisional hypotheses about the real world which can be disproved by our observations, but can never be proven true, cf. Popper (1935/1982) — nor do I wish to claim that my theory is the only interesting or sensible theory. On the contrary, I take the view that the purpose of linguistics is to provide as many different models for human language processing as possible, and let them compete with each other in terms of empirical coverage and accuracy (ie, in terms of how well they predict what we can observe about human language use), and in terms of their usefulness in practical applications. Bad theories will be slowly abandoned, whereas good theories will survive until a better alternative appears. What I do hope to demonstrate is that the theory presented here is an interesting alternative to existing theories, which differs from them in some important ways, and resembles them in many others.

The dissertation is organized as follows: Chapter 1 explains why we believe that human parsing is best viewed as an optimization problem. Inspired by computational and psycholinguistic considerations, it proposes a serial parsing model with repair based on local search, and explains why this parsing model encourages the use of a formalism based on dependency structure rather than phrase structure.

Chapter 2 describes the rule-based aspects of Discontinuous Grammar (DG). It describes the lexical rules that define our space of possible analyses, and describes how lexemes can be organized in an inheritance lexicon to avoid redundancy. It also develops the mechanisms that are needed to model lexical transformations, complements and adjuncts, landing sites and word order, and filler constructions and gapping coordinations.

Chapter 3 describes how the formalism assigns costs to linguistic analyses. It shows how primitive linguistic notions can be formalized by means of a vocabulary of cost operators which can be combined to express complex constraints on word order, obligatoriness, agreement, island constraints, selectional restrictions, word distances, and extraction path lengths. It shows how cost measures can be viewed as generalizations of OT constraints and probabilistic constraints, and how cost measures can be interpreted from a cognitive and linguistic point of view. Finally, it proves that, given a linguistically plausible set of assumptions about idealized speakers, a speaker’s preference ordering on the space of all possible analyses can always be expressed by means of a utility measure.
Chapter 4 demonstrates how the syntax formalism can be used to account for a wide range of syntactic phenomena. The phenomena include dependencies and functor-argument structures; word order phenomena such as topicalizations, extrapositions, and scramblings; filler phenomena such as control constructions, relatives, and parasitic gaps; coordination phenomena such as sharing and gapping coordinations; discourse structure and anaphora; punctuation phenomena; and lexical transformations such as inflections, expletives, and passives. We also outline our work on the Danish Dependency Treebank.

Chapter 5 introduces a new statistical estimation technique, called HPM and XHPM estimation, which is suited to the estimation of probability distributions for random vectors with associated classification hierarchies. The HPM and XHPM models function as corrections to a prior distribution, which ensures that the prior distribution is used if there are few data, and that probability mass is moved from low-probability regions to high-probability regions if there is statistically significant evidence for it, where regions are defined as set differences between classes in the hierarchies. The method is tested by means of a simulation study.

Chapter 6 describes how to construct probabilistic language models for DG from classification hierarchies and treebanks, using a mixture of HPM and XHPM distributions, and other statistical distributions. The chapter introduces a formal language for specifying probabilistic language models and how their parameters are computed from a treebank. It then proposes a generative probabilistic language model for Discontinuous Grammar with detailed submodels for landing sites and word order, complements and adjuncts, filler generation and filler consumption, gapping coordinations, deep roots, antecedents, and punctuation marks.

Chapter 7 describes our serial parsing model with repair. It outlines how the basic parsing algorithm can be extended to deal with segmentation and multi-speaker dialogue. It presents different families of parsing operations and their computational complexity, and identifies a subset of parsing operations that is both computationally efficient and psycholinguistically plausible. It discusses the effect of island constraints on the computational efficiency of the parsing algorithm, and how the efficiency can be improved by means of error-driven parsing combined with efficient search strategies for each parsing step. We also show that with some refinements, the parsing model is compatible with the psycholinguistic evidence
about head-driven parsing. Finally, we describe the steps we have taken towards evaluating the parser.

In the conclusion, we summarize our findings and discuss how far we have reached the goals set out in the beginning, and what is still missing. The Danish summary in Appendix B is a translation of the conclusion. Our detailed probabilistic DG language model is included in Appendix A.

Although the dissertation to some degree represents a rethinking of the underlying assumptions about the design of parsers and syntax formalisms, it also borrows heavily from the ideas of researchers in various frameworks — so much that the dissertation is perhaps best described as a rearrangement of other people’s ideas. This indebtedness can be illustrated by a rough outline of the history of the thesis.

The dependency formalism originally grew out of a desire in 1998 to combine the formal well-definedness of HPSG (Pollard and Sag 1994) with Helbig’s (1971/1969) lexicographically oriented school of dependency theory. The cognitive parsing model grew out of a desire in 1999 to model human parsing, and was first based on self-inspection, but later complemented by advice from the psycholinguists Patrick Sturt and Don C. Mitchell in 1999–2000. In 2000, I discovered that many of my ideas on syntax had already been proposed by Richard Hudson (2003) within Word Grammar, and my conception of syntax has since been greatly influenced by him.

In 2001, OT (Tesar 1995) and PCFG (Manning and Schütze 1999, ch.11) filled a gap in my parsing algorithm by providing the insight that parsing is an optimization problem. Coupled with a book on combinatorial optimization by Papadimitriou and Steiglitz (1982), this allowed me to recast my parsing algorithm as an instance of local search and invent cost operators as a way to formalize my linguistic vocabulary and express linguistic constraints formally. My notion of constraints deviated from HPSG and OT, but was strongly inspired by the emphasis on constraints in these theories.

In 2002, my colleagues Daniel Hardt and Peter Juel Henrichsen inspired me to look at problems related with elliptic coordinations and anaphora, spoken language recognition, and machine learning. The development of the Danish Dependency Treebank (Kromann et al. 2003) in 2002–2003, made necessary by the need to build linguistic resources at my department and test my parser, further prompted me to look for ways of inducing a lexicon from a treebank. Here, I received great inspiration from the literature on machine learning and statistics. Thus, the dissertation would have been
impossible without the ideas I have borrowed from a lot of other people.

In the text, I have tried to state references to all the researchers and frameworks that have influenced me directly. Wherever possible, I have also tried to mention proposals in the literature that have not influenced me directly, but which either resemble my proposals or differ from them in an interesting way. However, the reader should be warned that the literature is so vast that only a historian of computational linguistics can sort out everything, and that my citations are therefore necessarily incomplete.

A number of researchers deserve mention because I have discussed my work with them at some point, and they have suggested small or large ideas that have somehow found their way into this dissertation. They include Jens Allwood, Niels Davidsen-Nielsen, Anders Frankild, Daniel Hardt, Peter Juel Henrichsen, Richard Hudson, Per Anker Jensen, Kyle Johnson, Aravind Joshi, Stig W. Jørgensen, Yuki Kamide, Ronald Kaplan, Sabine Kirchmeier-Andersen, Alex Klinge, Line H. Mikkelsen, Don C. Mitchell, Joakim Nivre, Barbara H. Partee, Christopher Potts, Geoffrey K. Pullum, Owen Rambow, Maribel Romero, Ivan Sag, Gerold Schneider, Peter Rossen Skadhauge, Patrick Sturt, Carl Vikner, Sten Vikner, and Bjarne Ørsnes. I am grateful to Line H. Mikkelsen and Stine Kern Lynge for their contributions to the Danish Dependency Treebank, and to my former Ph.D. advisors Carl Vikner and Sabine Kirchmeier-Andersen for their advice. I am particularly grateful to Daniel Hardt, who took the time to read through large parts of the manuscript and provide valuable criticism.

I would also like to extend my thanks to Bernhelm Booß-Bavnbek, Lars Kadison, and Richard Kadison for their lasting influence on me during my formative years as a mathematician, and to my father for introducing me to linguistics long before any of us knew I would end up as a linguist. Finally, I would like to thank my family, my mother, and especially my wife Tine and my son August for their unwavering patience, support, and advice.

Matthias Trautner Kromann
Copenhagen, December 2005
Part I

Introduction
Chapter 1

Motivation and overview

We explain why human parsing is best viewed as an optimization problem, and argue that human parsing is based on heuristic rather than exact algorithms. Inspired by computational and psycholinguistic considerations, we propose a serial parsing model with repair based on local search, and explain why this parsing model works better with dependency analyses than with phrase structure analyses.

1.1 Human communication as an optimization problem

Summary. We describe how speakers and hearers are faced with the problem of pairing meanings and speech signals in a way that optimally facilitates communication, and appeal to utility theory to argue that the underlying speaker and hearer preferences can be modelled by means of a real-valued utility measure. Based on this insight, we argue that human parsing and generation are best viewed as optimization problems. In a historical note, we contrast our utility-based view with the classical Chomskyan view of grammars.

Both verbal and non-verbal human communication can be viewed as a sequence of exchanges between speakers and hearers via sound, text, or gesture. In each exchange, a speaker uses speaker language L and speaker context C to encode intended meaning M as speech signal S. The speech signal S, after being distorted by noise, is then perceived as speech signal S' by a hearer, who tries to guess the speaker’s intended meaning by using hearer language L' and hearer context C' to construct a perceived meaning
Chapter 1. Motivation and overview

\(M' \). The exchange is shown schematically below:

\[
M \xrightarrow{\text{production}_{L,C}} S \xrightarrow{\text{noise}} S' \xrightarrow{\text{understanding}_{L',C'}} M'
\]

The hearer misunderstands the speaker, causing the communication to fail, if the perceived meaning \(M' \) differs substantially from the intended meaning \(M \). Many factors contribute to the risk of misunderstanding. First of all, communication is difficult if speaker and hearer have languages or perceptions about contexts that differ fundamentally from each other, or if the speech signal is distorted too much by noise. However, even in an ideal world without noise where speaker and hearer are assumed to share the same language and the same perceptions about contexts, communication remains difficult because of the inherent ambiguity of language, which allows speakers to express a meaning and hearers to interpret a speech signal in many different ways. Communication therefore involves a substantial amount of guessing and uncertainty: speakers must try to find the speech signal \(S \) that they think best conveys the meaning \(M \) to the hearers, given speaker language \(L \) and context \(C \) (the problem of production or generation); similarly, hearers must try to find the meaning \(M' \) that they think fits best with the noisy speech signal \(S' \) originating from the speaker, given hearer language \(L' \) and context \(C' \) (the problem of understanding or parsing).

To formalize the problem slightly, we define an analysis as a tuple \(A = (S, M, C) \) where \(S \) is a speech signal, \(M \) is a meaning, and \(C \) is a context. With this terminology, we can say that hearers and speakers are faced with identical problems of finding an analysis \(A = (S, M, C) \) for speakers or \(A' = (S', M', C') \) for hearers that best facilitates the communication while being compatible with the known information \((M, C)\) for speakers and \((S', C')\) for hearers. In order to find the analysis that seems best in terms of facilitating the communicative goals, hearers and speakers must obviously be capable of comparing different analyses with each other. Their preferences in this respect can be modelled as complete orderings (cf. Definition 3.13) on the set of all analyses of the form \(A = (S, M, C) \), with either fixed \((M, C)\) as speakers, or fixed \((S, C)\) as hearers.

Preference orderings can be rather complicated, and it is difficult to say anything interesting about their properties in general, except that they allow us to compare arbitrary objects in a consistent way. However, there are subclasses of preference orderings whose properties are well-known, and measurable utilities (cf. Definition 3.15) stand out as the most important
and best understood example. A measurable utility is a linear function u that maps a totally ordered space S into the real numbers \mathbb{R} in an order-preserving manner, ie, $u(a) > u(a')$ if and only if $a \succ a'$. Thus, a measurable utility defines preferences in absolute rather than relative terms. Preference orderings and measurable utilities have been the subject of intense study because of a famous theorem by John von Neumann and Otto Morgenstern (1944). The theorem (which we will return to in section 3.4) states that if \succsim is a preference ordering on a set S, then there exists a measurable utility $u : S \rightarrow \mathbb{R}$ for \succsim provided S is a so-called mixture set that satisfies the axioms of utility.

When applied to our model of human communication, the von Neumann-Morgenstern theorem states that speaker and hearer preferences can be modelled in absolute terms by a measurable utility u, provided the preferences satisfy the axioms of utility. The discussion of whether speaker and hearer preferences satisfy the axioms of utility is a rather technical discussion, but in section 3.4, we will argue that it is reasonable to assume that they do — ie, we will formulate a linguistically reasonable model of an idealized speaker, and show that this model satisfies the axioms of utility.

We will interpret a negated measurable utility $c = -u$ as a linguistic ill-formedness measure or cost measure. Intuitively, the ill-formedness of an analysis is a real number that quantifies how ill-formed an analysis is in terms of the speaker’s or hearer’s language. That is, it quantifies the degree to which the analysis deviates from the perceived phonological, morphological, syntactic, semantic, and pragmatic conventions of the language.

So far, we have assumed that a person’s speaker and hearer preferences only allow us to compare analyses $A = (S, M, C)$ and $A' = (S', M', C')$, with either fixed $(M, C) = (M', C')$ as speaker, or fixed $(S, C) = (S', C')$ as hearer. This is rather inconvenient, because it gives us a large number of unrelated ill-formedness measures: one for each possible (M, C) and (S, C). From a theoretical point of view, it is more convenient to assume that a person has one large ill-formedness measure which can be used to compare analyses with arbitrary speech signals, meanings, and contexts, in both production and understanding. We therefore make the following two simplifying assumptions:

- **Totality assumption.** A person is capable of comparing arbitrary analyses with each other, ie, any preference ordering \succsim is defined on the entire set S consisting of all analyses (S, M, C), and for all pos-
sible \((S, M, C)\) and \((S', M', C')\) in \(S\), the person’s corresponding ill-formedness measure \(c\) satisfies \(c(S, M, C) \leq c(S', M', C')\) if and only if \((S, M, C) \succeq (S', M', C')\).

- **Uniqueness assumption.** A person has exactly one ill-formedness measure \(c\), which is used for both production and understanding.

With the addition of these assumptions, our linguistic model allows ill-formedness measures to be used to compare unrelated linguistic exchanges with each other (similar to what language teachers do when they use a grade to quantify the linguistic ability of students who have written essays on different topics). However, the model makes few assumptions in most other respects. In particular, it does not assume that a person’s ill-formedness measure cannot differentiate between different languages, dialects, or stylistic registers,\(^1\) or that different speakers of the same language cannot have slightly different ill-formedness measures.\(^2\)

With these two assumptions and the resulting reformulation of preference orderings in terms of ill-formedness measures, we can now model human generation and parsing as mental processes where speakers and hearers try to find an analysis \(A = (S, M, C)\) where the ill-formedness measure is minimal, given a fixed \((M, C)\) for speakers and a fixed \((S, C)\) for hearers. In the terminology of computer science, this means that we have characterized human generation and parsing as optimization problems.

Definition 1.1. An optimization problem is a computational problem where we are given a search space \(S\) and a real-valued cost measure \(c : S \rightarrow \mathbb{R}\), and must find an optimal solution (or minimal-cost solution) in \(S\), i.e., a point \(s_{\text{opt}}\) in \(S\) with the property that \(c(s_{\text{opt}}) \leq c(s)\) for all \(s \in S\) (cf. Papadimitriou and Steiglitz 1982, p. 4). An algorithm that specifies how to find an optimal

\(^1\)If language, dialect, and stylistic register is considered to be a parameter that is encoded in a person’s analyses, an appropriate ill-formedness measure will be capable of detecting inconsistencies between the context, the meaning and the speech signal with respect to these parameters.

\(^2\)Indeed, it would be surprising if two persons had totally identical ill-formedness measures: Just like people speak different dialects and sociolects, differences between people’s grammaticality judgments suggest that they also speak different idiolects. Moreover, there is no a priori reason to assume that different people encode meanings and speech signals in completely identical ways: given the partly random growth process of the human brain (cf. Kandel et al. 1991, p. 943), slight incompatibilities in the way different brains store linguistic representations are perfectly conceivable.
solution is called an optimization algorithm.

In our linguistic model of language users (or speakers, as we will refer to them from now on), the search space corresponds to the speaker’s space of all possible linguistic analyses, the cost measure corresponds to the speaker’s grammar (construed as the ill-formedness measure that expresses the speaker’s phonological, morphological, syntactical, semantic and pragmatic preferences), and the optimization algorithm corresponds to the processing principles used by the speaker for parsing or generation. We will assume that the grammar is constructed in such a way that there always is at least one optimal solution, and that if there is more than one optimal solution, then the speaker can choose freely between them. The linguistic distinction between competence and performance corresponds to the algorithmic distinction between exact algorithms, which always return a globally optimal solution, and heuristic algorithms, which may sometimes return a non-optimal solution.

The search spaces, cost measures, and optimization algorithms used in models of human language processing are obviously theory-dependent. By recasting human parsing and generation as optimization problems and grammars as ill-formedness measures, we have therefore produced a general model of human communication where most of the details remain to be filled in. In particular, we must provide answers to the following questions before we have a complete linguistic model:

- How should we design the search space, ie, what is the best way of modelling a speaker’s notion of linguistic analyses?
- How should we design the cost measure, ie, what is the best way of modelling a speaker’s ill-formedness measure?
- And how should we design the optimization algorithms for parsing and generation, ie, what is the best way of modelling the linguistic processing performed by speakers and hearers during understanding and production?

Different answers to these questions lead to different linguistic theories. For example, a phrase-structure-based theory could stipulate that the search space consists of the set of all finite phrase-structure trees with labels chosen from a given set of possible words and word classes, and a dependency-based theory could stipulate that the search space consists of all dependency trees with node and edge labels chosen from a given set of possi-
ble words and grammatical functions. Linguistic theories can also have more sophisticated notions of analyses that include contexts, semantic representations, etc., resulting in search spaces that are correspondingly more complicated. The way the cost measure and the optimization algorithms are designed are equally important for determining the shape of the resulting theory. In the following chapters, we will explore one particular set of answers, and relate them to answers given by some other theories.

Historical note

The utility-based view of language presented so far differs from the classical Chomskyan view, which has dominated linguistics for the past 50 years. The classical Chomskyan view is expressed succinctly in the following quote:

“The fundamental aim in the linguistic analysis of a language L is to separate the grammatical sequences which are the sentences of L from the ungrammatical sequences which are not sentences of L and to study the structure of the grammatical sequences. The grammar of L will thus be a device that generates all of the grammatical sequences of L and none of the ungrammatical ones.” (Chomsky 1957, p. 13)\(^3\)

In our utility-based view of language — which is partly inspired by the views proposed in Optimality Theory (Tesar 1995; Kager 1999) and probabilistic language models such as Probabilistic Context-Free Grammar (Manning and Schütze 1999, ch. 11), Data-Oriented Parsing (Bod 1998), and probabilistic unification grammars (Brew 1995; Johnson 2003) — parsing and generation are viewed as optimization problems, and grammars are viewed as devices that define a fine-grained preference ordering on the space of all grammatical and ungrammatical analyses. In contrast, Chomskyan theories have nothing to say about ungrammatical analyses and have no built-in preference ordering on the set of grammatical analyses.

\(^3\)Chomsky wrote his book partly in opposition to linguists like C.F. Hockett (1955, p.10), who thought that grammaticality represents a linguist’s schematized notions of probability, where low probabilities correspond to “ungrammatical,” and high probabilities correspond to “grammatical” — ie, in Hockett’s view, the well-formedness of an expression could be quantified by a probability (ie, by a special kind of utility). Thus, in many respects, our utility-based view of linguistics can be seen as a return to Hockett’s pre-Chomskyan views.
1.2. Optimization from a computational point of view

This means that within a purely Chomskyan theory, parsing and generation can be defined as constraint satisfaction problems.

Definition 1.2. A *constraint satisfaction problem* is a computational problem where we are given a search space S and a constraint $c: S \rightarrow \{0, 1\}$, and must find a solution to the constraint c, ie, a point s in S with the property $c(s) = 0$. An algorithm that specifies how to find such a solution is called a *constraint satisfaction algorithm*.

Constraint satisfaction problems can be seen as special cases of optimization problems where the cost measure is restricted to the values 0 ("grammatical") and 1 ("ungrammatical"). In terms of speaker preferences, Chomskyan grammars therefore predict that all grammatical analyses are equally good, and that all ungrammatical analyses are equally bad. It can be discussed whether this problem belongs to linguistics proper, but as a model of speaker preferences, the Chomskyan approach is inadequate because it fails to model the human ability to resolve ambiguities and recover from ungrammatical input. The problem even persists in many linguistic theories that have taken steps towards a utility-based or probabilistic view, because most of them have maintained the notion that all ungrammatical analyses are equally bad.

In this section, we have argued that human communication can be viewed as a decision problem where speaker and hearer are faced with the problem of choosing a pairing of meaning and speech signal (ie, a linguistic analysis) that best facilitates their communicative goals. We have argued that the linguistic choices of speakers and hearers can be modelled by means of a preference ordering on the set of all analyses, and that this preference ordering can in turn be expressed by means of a measurable utility, if our idealized axiomatic model of human speakers presented in section 3.4 is correct. This means that human parsing and generation must be modelled as optimization problems rather than satisfaction problems. In the following section, we will therefore take a closer look at optimization from a computational point of view.

1.2 Optimization from a computational point of view

Summary. We introduce the notions of time complexity and NP-hardness, and prove that the Discontinuous Dependency-based Optimality Parsing problem is NP-hard. We
describe how exact and heuristic parsing methods represent different trade-offs between precision and time complexity, and argue for the use of heuristic parsing methods as a way of ensuring reasonable precision while avoiding the NP-hardness of formalisms such as HPSG, LFG, DOP, and OT. Finally, we briefly compare different heuristic strategies proposed in the parsing literature, and present the psychological considerations that have motivated our choice of serial parsing with repair as the basis of our parsing method.

So far, we have characterized generation and parsing as optimization problems, ie, as problems where the speaker must search through a large search space in order to find an analysis which is optimal among the analyses that match a given meaning or speech signal. Optimization problems have been studied intensively in computer science. Before we proceed with specifying a search space and cost measure within our linguistic theory, we should therefore ask how algorithm theory restricts our choice of optimization algorithm, and how our choice of optimization algorithm in turn restricts our choice of linguistic search space and cost measure.

As a preparation for our discussion of optimization algorithms, we will first give a formal definition of the elementary notions in algorithm theory: problems, algorithms, computations, running times, space requirements, and precision (cf. Aho et al. 1987; Papadimitriou and Steiglitz 1982).

Definition 1.3. A computational problem p is a function that returns a problem instance $p(i)$ for each input i in a set I of possible inputs. An algorithm A with inputs I is a function that returns a computation A_i with output A_i^{output} for each $i \in I$. The running time A_i^{time} of a computation A_i is the number of elementary machine instructions performed during the computation, and the space requirement A_i^{space} of A_i is the highest number of elementary memory units needed during the computation. The precision of an algorithm A with respect to the problem p is the fraction of inputs $i \in I$ for which the output A_i^{output} is a solution to the problem instance $p(i)$.

In order to compare different algorithms with respect to their time and space efficiency, it is useful to define a measure of an algorithm’s time and space requirements. Obviously, an algorithm’s time and space requirements vary greatly with the input: for small inputs, computations tend to be fast and require little memory, whereas for large inputs, computations tend to require more time and memory. For this reason, it is convenient to find a way of measuring the size of the input (it is usually chosen to reflect the number of elementary memory units needed to represent the input),
1.2. Optimization from a computational point of view

and express the time and space requirements of an algorithm as functions of the size of the input. These functions, known as time and space complexities, are defined formally below.

Definition 1.4. Let \(A \) be an algorithm with inputs \(I \), and let \(\sigma: I \rightarrow [0, \infty[\) be a function that assigns size \(\sigma(i) \) to any input \(i \in I \). The (worst-case asymptotic) time complexity \(A^\text{time}_\sigma(n) \) of \(A \) with respect to \(\sigma \) is then defined as the largest processing time for any computation \(A_i \) with \(\sigma(i) \leq n \), i.e., as the function:

\[
A^\text{time}_\sigma(n) = \max_{i \in I \text{ with } \sigma(i) \leq n} A^\text{time}_i
\]

and the (worst-case asymptotic) space complexity \(A^\text{space}_\sigma(n) \) of \(A \) with respect to \(\sigma \) is defined as the largest space requirement for any computation \(A_i \) with \(\sigma(i) \leq n \), i.e., as the function:

\[
A^\text{space}_\sigma(n) = \max_{i \in I \text{ with } \sigma(i) \leq n} A^\text{space}_i
\]

The way an algorithm is implemented usually affects the time and space requirements of the corresponding computations with a constant factor, which means that the growth of a time or space complexity is often more informative than its numerical value. Moreover, for most algorithms, the time and space complexities are difficult to calculate exactly, so they are usually characterized in terms of asymptotic upper or lower bounds, rather than being stated exactly. For these reasons, we introduce the notation below to state upper and lower bounds for the asymptotic growth of time and space complexities (cf. Papadimitriou 1994, p. 5).

Definition 1.5. Let \(f \) and \(g \) be functions from \([0, \infty[\) to \([0, \infty[\). We write \(f = O(g) \) and say that \(g \) is an asymptotic upper bound for the growth of \(f \) if there exists constants \(c > 0 \) and \(n_0 > 0 \) such that \(f(n) \leq cg(n) \) for all \(n \geq n_0 \). We write \(f = \Omega(g) \) and say that \(g \) is an asymptotic lower bound for the growth of \(f \) if there exists constants \(c > 0 \) and \(n_0 > 0 \) such that \(f(n) \geq cg(n) \) for all \(n \geq n_0 \). Finally, we write \(f = \Theta(g) \) and say that \(f \) has asymptotic growth \(g \) if \(f = O(g) \) and \(f = \Omega(g) \).

With these formal definitions at our disposal, we are now ready to return to our discussion of optimization problems.

Optimization problems have a prominent place in computer science, both because a large number of important everyday problems can be described as optimization problems, and because many of the hardest and
most interesting problems in computer science are optimization problems. The most famous example is the Travelling Salesman Problem (TSP), where the problem is to find the shortest tour connecting a given set of cities. Finding an algorithm that solves TSP, or any other optimization problem with a finite search space, is easy, since we can always use a brute-force search where we try all points in the search space one by one, computing their cost and keeping track of the best solution. After searching through the entire search space, the recorded solution will be globally optimal.

Unfortunately, brute-force search is very inefficient in terms of running time. For example, in a TSP problem with \(n \) cities, there are \(\frac{1}{2}(n - 1)! \) different tours, so that 10 cities correspond to 3.6 million tours, and 20 cities correspond to \(2.4 \cdot 10^{18} \) tours. This means that brute-force search has time complexity \(\Theta((n - 1)!) \), ie, brute-force search is too slow to be used in practice for all but the smallest \(n \). For this reason, the time complexity of an algorithm is as important as its ability to produce the correct results.

In algorithm theory, computational problems are divided into complexity classes according to the time complexity of the algorithms needed to solve the problems. The most important classes are P and NP, defined below (cf. Papadimitriou and Steiglitz 1982, p. 347–348).

Definition 1.6. A recognition problem is a problem where every problem instance is a yes-no question. The class P of (deterministic) polynomial-time recognition problems consists of all recognition problems where a solution can be computed by an algorithm with time complexity bounded by a polynomial. The class NP of non-deterministic polynomial recognition problems consists of all recognition problems with the property that for each “yes” instance, there must exist a certificate with polynomially bounded length which can be used to verify the “yes” answer in polynomial time.

Example 1.7. The problem of determining whether a given string is generated by a given context-free grammar can be solved in \(O(n^3) \) time with a chart parsing algorithm, so this recognition problem belongs to P. As an example of an NP problem, we can consider TSP reformulated as a recognition problem, where we must determine whether there exists a tour with length \(\leq d \) for some given distance \(d \). This version of TSP is in NP, for if the answer to the question is “yes,” then the answer can be verified in polynomial time using any tour with length \(\leq d \) as the certificate.

The class P is obviously a subset of NP. Although it has never been
proven that P is a proper subset of NP, the class NP contains a large number of difficult computational problems with great practical importance (such as TSP) for which no polynomial-time algorithm has yet been found, despite persistent efforts by brilliant researchers. It is therefore widely believed that $P \neq NP$, and that problems like TSP can only be solved with exponential-time algorithms (cf. Papadimitriou and Steiglitz 1982, p. 343).

In algorithm theory, we are often interested in comparing the hardness of two problems. Intuitively, a problem is as hard as another problem if an instance of the second problem can be transformed into an instance of the first problem by means of a polynomial-time algorithm. This intuition is formalized below.

Definition 1.8. Let p and p' be recognition problems with inputs I and I', respectively. An algorithm T which for each $i \in I$ computes some $T(i) \in I'$ is called a transformation of p to p' if T has the property that i is a “yes” instance of p iff $T(i)$ is a “yes” instance of p'. A transformation T is called polynomial if T has polynomial time complexity.

Transformations allow us to define the crucial notions of NP-completeness and NP-hardness. Intuitively, NP-complete and NP-hard problems have the property that they are at least as hard as any problem in NP.

Definition 1.9. A problem p is called NP-hard if every problem in NP can be polynomially transformed to p. NP-hard problems that belong to NP are called NP-complete.

The existence of NP-complete problems is far from obvious, and it is one of the great achievements of algorithm theory to have shown that NP-complete problems actually exist, and that the group of NP-complete problems includes many well-known problems, such as the recognition version of TSP (cf. Papadimitriou 1994, p. 397). The standard method for proving that a problem is NP-hard is to prove that a known NP-hard problem can be polynomially transformed into the new problem, i.e., if we can solve the new problem, we can solve the known NP-hard problem and hence all problems in NP.

With these tools at hand, we are now ready to prove that unrestricted discontinuous dependency-based optimality parsing is NP-hard. We start by defining a highly simplified dependency formalism. If we can prove that parsing in the simplified formalism is NP-hard, then it follows that
parsing in any dependency formalism which has the simplified formalism as a special case is NP-hard as well. In particular, the syntax formalism Discontinuous Grammar presented in the following chapters has the simplified formalism as a special case, so it is NP-hard as well.

Definition 1.10. A simplified dependency tree is a tree whose nodes represent words, and whose labeled directed edges represent dependency relations between words. A simplified weighted dependency grammar is a function W that for each local dependency tree t computes a weight $W(t)$ in $[0,\infty]$, where the weight ∞ indicates that the local tree is ill-formed. The total weight $W(T)$ of a dependency tree T is defined as the sum of the weights for all local trees, ie:

$$W(T) = \sum_{t \in L(T)} W(t)$$

where $L(T)$ is the multi-set consisting of all local dependency trees in T.

As we have argued in section 1.1, parsing should be viewed as an optimization problem. In particular, dependency parsing can be characterized as the following optimization problem:

Definition 1.11. In the Discontinuous Dependency-based Optimality Parsing problem (DDOP), we are given a weighted dependency grammar W and a string s of words, and must find a dependency tree T with string s that is optimal with respect to the grammar W, ie, which minimizes $W(T)$.

It turns out that discontinuous dependency parsing is as hard as TSP, ie, it is a highly demanding computational problem.\footnote{Neuhaus and Bröker (1997) have proven the NP-hardness of discontinuous dependency-based satisfaction parsing (DDSP). Their proof is more general, but also more complicated than the proof presented here.}

Theorem 1.12. The Discontinuous Dependency-based Optimality Parsing problem is NP-hard.

Proof. The proof proceeds by showing that TSP can be transformed into DDOP. In TSP, we have cities $C = \{1,\ldots,n\}$ and distance function $D : C \times C \rightarrow [0,\infty]$. We must construct a transformation from TSP to a weighted dependency grammar W and a string s with the property that any optimal dependency tree for s corresponds to an optimal tour.
Since a tour is a simple cycle which must include all cities, we can assume without any loss of generality that a tour starts and ends with the city 1. In order to represent a cyclic tour by means of a non-cyclic dependency tree, we will introduce the special city name \(-1\) to represent the city 1 viewed as the end-point of the tour, so that any tour can be represented as a non-cyclic path \((1, T(2), \ldots, T(n), -1)\), where \(T\) is some permutation of \(\{2, \ldots, n\}\). This path can in turn be translated into a (possibly discontinuous) linear dependency tree with nodes \(\{1, \ldots, n, -1\}\) where successive nodes on the path are indicated by a “succ” dependency from the previous node to the successor node. Figure 1.1 exemplifies the procedure by showing the dependency tree corresponding to the tour \((1, 5, 4, 2, 3)\).

As our input string, we use \(s = (1, 2, \ldots, n, -1)\). As our dependency grammar \(W\), we define:

\[
W(t) = \begin{cases}
D(i,j) & \text{if } t = i \xrightarrow{\text{succ}} j \text{ with } 1 \leq i \leq n \text{ and } 2 \leq j \leq n \\
D(i,1) & \text{if } t = i \xrightarrow{\text{succ}} -1 \text{ with } 1 \leq i \leq n \\
0 & \text{if } t = -1 \\
\infty & \text{otherwise}
\end{cases}
\]

The grammar \(W\) ensures that 1 must be a root node (ie, 1 cannot be the “succ” dependent of any other node), and that \(-1\) must be a terminal node (ie, \(-1\) cannot take any other node as its “succ” dependent). The linearity of the tree is ensured by requiring any node \(1, \ldots, n\) to have exactly one “succ” dependent. Moreover, the weight assignment ensures that the weight assigned to a dependency tree equals the distance of the corresponding tour. This gives a one-to-one correspondence between tours and well-formed dependency trees where an optimal dependency tree corresponds to an optimal tour. Since the transformation from TSP to DDOP can be performed in linear time, this proves that TSP can be polynomially transformed into DDOP, and hence that DDOP is NP-hard.

The dependency trees used in the proof may seem implausible from a
linguistic point of view, but it is in practice difficult to constrain discontinuity enough to ensure polynomial-time parsing without sacrificing the linguistic expressiveness of the formalism. Dikovsky (2001) has shown that it is possible to construct a restricted discontinuous dependency formalism that leads to polynomial-time parsing if parsing is viewed as a satisfaction problem, but it is not clear that there exists a linguistically adequate dependency formalism with polynomial-time parsing if parsing is viewed as an optimization problem.

The NP-hardness of DDOP is caused by the potential discontinuity of the dependency tree, since the corresponding continuous version of DDOP can be solved with a standard probabilistic chart-parsing algorithm with time complexity \(O(n^3)\), and hence cannot be NP-hard.

Definition 1.13. In the Continuous Dependency-based Optimality Parsing problem (CDOP), we are given a dependency-grammar \(W\) and a string \(s\) of words, and must find a continuous dependency tree \(T\) with string \(s\) that is optimal with respect to the grammar \(W\), ie, which minimizes \(W(T)\).

The reason why discontinuous dependency parsing (DDOP) is so much harder than continuous dependency parsing (CDOP) is perhaps best understood by considering why chart parsing algorithms work for CDOP, but fail for DDOP. The success of chart parsing for CDOP (and PCFG parsing in general) is caused by the fact that a string with \(n\) words has \(\frac{1}{2}n(n+1)\) different continuous substrings, so that we can use dynamic programming and create a chart containing the optimal analyses of all continuous substrings in \(O(n^3)\) time. In contrast, in the unrestricted discontinuous case, there are \(2^n - 1\) non-empty discontinuous substrings, so a chart containing the optimal analyses of all discontinuous substrings must contain exponentially many entries, which results in a chart parsing algorithm with exponential worst-case time complexity. The NP-hardness of DDOP compared to CDOP can therefore be viewed as a consequence of the combinatorial explosion caused by the discontinuity of DDOP.\(^5\)

In the simplified version of dependency grammars presented so far, we have restricted ourselves to local cost measures where the cost of a local

\(^5\)It can be calculated by means of so-called Prüfer symbols that a string with \(n\) words has \(n^{n-1}\) possible dependency trees excluding functional labels, and \((kn)^{n-1}\) possible dependency trees including functional labels, where \(k\) is the number of possible function labels (cf. Biggs 1989, p. 204).
tree only depends on the parent node and the child nodes, and not on all other nodes in the dependent trees. This is a very restrictive assumption about the cost measure, and without this assumption, it is quite conceivable that even CDOP becomes NP-hard.

Most linguistically interesting syntax formalisms lead to NP-hard parsing, either because of their linguistic expressivity, or because they use optimization-based parsing with a complex cost measure. Thus, NP-hardness results have been proven both for linguistically expressive syntax formalisms with a binary notion of grammaticality where parsing is viewed as a satisfaction problem — such as LFG (Maxwell and Kaplan 1993), unification-based formalisms like HPSG (Trautwein 1994), and discontinuous dependency grammar (Neuhaus and Bröker 1997) — as well as for syntax formalisms where parsing is viewed as an optimization problem with a complex cost measure — such as Optimality Theory with unrestricted constraints (Wareham 1998), and Stochastic Tree-Substitution Grammars and Data-Oriented Parsing (Sima’an 1996). PCFG and TAG are examples of syntax formalisms where parsing is polynomial, since they can be parsed in $O(n^3)$ and $O(n^6)$ time, respectively, but they are not based on optimization, and there are linguistic phenomena that they cannot properly account for (cf. Abeillé and Rambow 2000, p. 31–35).

The formalisms can be classified according to whether they view parsing as a satisfaction problem or an optimization problem, and whether they are discontinuous or continuous (ie, whether they are expressive enough to allow grammars that can generate all discontinuous dependency trees), as summarized in Figure 1.2. In light of Theorem 1.12, it is no surprise that all existing discontinuous syntax formalisms with optimization are NP-hard. However, it would be wrong to interpret the NP-hardness as evidence that efficient computation is inherently impossible in discontinuous syntax formalisms with optimization, for we need to distinguish between exact and heuristic algorithms, and the NP-hardness of DDOP only applies to exact algorithms.

6Chart parsers for CFG and TAG create a packed chart that may contain an exponential number of parses (e.g., consider the grammar $X \rightarrow X X$ with terminal rule $X \rightarrow x$). Thus, given a sufficiently linguistically sophisticated cost measure on top of CFG and TAG (say, a measure that checks semantic and pragmatic plausibility), it is quite conceivable that the corresponding optimality parsing problem in CFG and TAG will turn out to be NP-hard.
Chapter 1. Motivation and overview

<table>
<thead>
<tr>
<th>Continuous formalism</th>
<th>Satisfaction problem</th>
<th>Optimization problem</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>polynomial: CFG, TAG</td>
<td>polynomial: PCFG, CDOP</td>
</tr>
<tr>
<td></td>
<td></td>
<td>NP-hard: STSG, Tree-DOP</td>
</tr>
<tr>
<td>Discontinuous formalism</td>
<td>NP-hard: HPSG, LFG, DDSP</td>
<td>NP-hard: OT, LFG-DOP, DDOP</td>
</tr>
</tbody>
</table>

Figure 1.2: Computational complexity of different syntax formalisms.

Definition 1.14. An optimization algorithm is called exact if it is guaranteed to always find a globally optimal solution. An optimization algorithm that is not guaranteed to find a globally optimal solution, but is designed to often result in an optimal or near-optimal solution anyway, is called a heuristic algorithm.

Heuristic and exact algorithms represent different trade-offs between precision and computational efficiency, ie, between the need to find a guaranteed globally optimal solution and the need to perform the computations within a reasonable amount of time: exact algorithms tend to be precise but slow, whereas heuristic algorithms tend to be fast but not always precise.

Garden-path sentences such as “The horse raced past the barn fell” (Bever 1970) show that humans sometimes fail to find the best parse of a sentence, thereby providing evidence that human parsing is heuristic rather than exact. From a computational perspective, it is not surprising that nature has chosen this path: the NP-hardness of DDOP shows that a heuristic algorithm may be necessary if we want to escape from exponential worst-case time complexity, ie, that we may have to give up precision in order to ensure speed.\(^7\)

In section 1.1, we have argued that optimization is necessary in order to faithfully model human parsing. In section 1.4, we will argue that a discontinuous formalism is necessary in order to give a linguistically sat-

\(^7\)It is sometimes argued that exact parsing in an NP-hard formalism can be reasonably efficient when restricted to “well-behaved” grammars that are carefully crafted to avoid constructions with exponential parsing behaviour. However, this strategy leads to a difficult trade-off between well-behavedness and robustness, since robust handling of speaker errors often requires the use of highly ambiguous grammars that tend not to be well-behaved. It also shifts much of the burden of ensuring efficient parsing to grammar engineers, thus adding to the complexity of their task. These objections aside, researchers like Daniels and Meurers (2002) have made remarkable progress towards efficient implementation of non-optimization based HPSG grammars.
isfactory treatment of discontinuous constructions in natural language, ie, to ensure good linguistic coverage. In this dissertation, we will therefore argue that human parsing should be modelled by a heuristic algorithm based on a discontinuous formalism with optimization. In order to prove the viability of such an approach, we will propose a specific discontinuous formalism with optimization in chapters 2 and 3, and in chapter 7, we will present promising parsing algorithms for discontinuous formalisms with optimization by presenting families of almost-linear heuristic parsing algorithms that return an optimal or near-optimal parse for most constructions, although they may fail to find an optimal solution when presented with garden-path sentences or particularly difficult ambiguities where human parsing is known to often fail.

In natural language parsing, most parsers have been based on exact algorithms, and most existing heuristic parsing models — including the Marcus parser (Marcus 1980), the garden-path model (Frazier and Rayner 1982), and most other psycholinguistic parsing models — are designed for syntax formalisms without optimization. The number of heuristic parsing algorithms proposed for discontinuous formalisms with optimization is therefore relatively small. The most important strategies behind heuristic parsers involving at least some degree of optimization are listed below.

- **Monte Carlo models**: Estimate the probability of parses from a sample of randomly generated analyses in Data-Oriented Parsing. (Bod 1995, 1996; Bod and Kaplan 2003)
- **Resource-limited parallel models (beam search)**: Maintain a list of the most promising partial analyses and prune low-probability analyses from the list in order to conserve computational resources. (Staab 1995; Lavie and Tomita 1996; Schneider 2003; Roark 2003)
- **Resource-limited constraint satisfaction models (minimal commitment models)**: Use a resource-limited monotonic constraint satisfaction process where low-probability choices are pruned. (Trueswell and Tanenhaus 1994; Sturt and Crocker 1998)
- **Connectionist models**: Model parsing by means of competitive attachment (Stevenson 1994, 1998; Merlo and Stevenson 2000; Stevenson and Smolensky 2005) or competitive inhibition (Vosse and Kempen 2000; Kempen and Harbusch 2002) in a neural network, or by using a recursive neural network to determine probabilities of attachment sites (Costa et al. 2003; Sturt et al. 2003).
Chapter 1. Motivation and overview

<table>
<thead>
<tr>
<th></th>
<th>Monte Carlo models</th>
<th>Resource-limited parallel models</th>
<th>Resource-limited constraint satisfaction</th>
<th>Connectionist models</th>
<th>Serial models</th>
</tr>
</thead>
<tbody>
<tr>
<td>Number of analyses</td>
<td>many</td>
<td>many</td>
<td>underspecified</td>
<td>underspecified</td>
<td>one</td>
</tr>
<tr>
<td>stored in parallel</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Selection of</td>
<td>analysis with</td>
<td>analysis with highest probability</td>
<td>N.A.</td>
<td>analysis induced by</td>
<td>current analysis</td>
</tr>
<tr>
<td>currently optimal</td>
<td>highest probability</td>
<td></td>
<td></td>
<td>links with</td>
<td></td>
</tr>
<tr>
<td>analysis</td>
<td></td>
<td></td>
<td></td>
<td>highest activation</td>
<td></td>
</tr>
<tr>
<td>Explanation of</td>
<td>N.A.</td>
<td>pruned low-probability branch</td>
<td>pruned low-probability variable assignment</td>
<td>network stabilizes on wrong analysis</td>
<td>repair distance too large to repair wrong analysis</td>
</tr>
<tr>
<td>garden-paths</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Figure 1.3: Differences between different heuristic strategies.

- **Serial models without repair**: Construct a parse serially by choosing a non-destructive parse action deterministically at each choice point. (Marcus 1980; Yamada and Matsumoto 2003; Nivre 2003, 2004)
- **Serial models with repair**: Use local search where analyses are constructed incrementally by local structure-changing operations. (Lewis 1998, 1999; Kromann 1999a, 2001; Schulz 2000; Daum and Menzel 2002)

The different strategies have very different properties in terms of how many analyses they store in parallel, how they select a currently optimal analysis among the available analyses, and how they account for garden-path phenomena. The differences are summarized in Figure 1.3. With respect to the number of analyses stored in parallel, Monte Carlo models and parallel models store many analyses in parallel, whereas serial models maintain only one analysis at any given time. Constraint satisfaction models and connectionist models can be seen as a hybrid between these two approaches, since they use a single underspecified representation in order to represent multiple analyses.

In order to provide a currently preferred analysis for semantic interpretation, Monte Carlo models and parallel models select the analysis with
the currently highest probability, connectionist models select the analysis induced by the links with the highest activation, and serial models use their unique current analysis. It is not immediately obvious how constraint satisfaction models could produce a currently optimal analysis.

Resource-limited parallel models and resource-limited constraint satisfaction models explain garden-paths by choice points that were pruned away by the parser because they were deemed improbable, although they were in fact necessary for constructing a grammatical analysis. In connectionist models, garden-paths arise when the network stabilizes on an incorrect analysis, and in serial models, garden-paths arise when the repair distance from the current partial analysis to the correct analysis becomes too large (or, in serial models without repair, when a wrong choice was made at a previous choice point). As far as we know, there has been no attempt to explain garden-paths within a Monte Carlo model.

In this dissertation, we have chosen to model human parsing by means of serial parsing with repair. This choice is not based on any conclusive evidence for serial parsing with repair — on the contrary, the relative merits of the different heuristic strategies are still an open question within psycholinguistics, and there are strong proponents of both connectionist models, parallel models, minimal commitment models, and serial models. However, our preference for serial models can be explained by our perhaps incorrect belief that serial models are more promising than other models in the following respects:

- **Low memory requirements**: Humans are bad at remembering large amounts of data flawlessly, and therefore tend to use problem solving strategies with low memory requirements (cf. Miller 1956). Since serial parsing requires the storage of only one analysis at a time, se-

8Psycholinguistic studies in favour of serial parsing include Hopf et al. (2003), who describe an ERP study that is argued to provide evidence for serial parsing with repair, and Lewis (2000) who argues for either serial models with repair or ranked parallel models, based on a review of the available evidence. Psycholinguistic studies against serial parsing include Pearlmutter and Mendelsohn (2000), who argue for ranked parallel models without competition and against serial parsing on the basis of a reading time study. It is not entirely clear which of these studies is right, although we suspect that the intransitive use of transitive verbs in the critical examples in Pearlmutter and Mendelsohn (2000) may be responsible for the effects that they interpret as evidence against serial parsing with repair. In any case, this is an area where further research is needed.
serial parsing has the smallest possible memory requirements, and only underspecified models have the potential to rival it in this respect.

- **Simple selection of currently optimal analysis:** We believe humans need to maintain a single currently preferred analysis during parsing in order to perform semantic interpretation. Since serial parsing maintains only one analysis at a time, it provides a particularly simple mechanism for selecting a currently preferred analysis, whereas underspecification and multiple parallel analyses necessitate a more complicated selection mechanism.

- **Simple account of repair with multiple levels:** Human parsing seems to involve two levels of repair: a subconscious repair which only leads to a slight delay in parsing, and a conscious repair where the delay is long and the hearer is consciously aware that a processing difficulty has arisen. With serial parsing, this phenomenon can be explained by a hierarchy of increasingly powerful and time-consuming parsing operations that are triggered by the failure of low-level parsing operations, whereas parallel models and minimal commitment models cannot immediately restore a choice point after it has been pruned from memory, but need to reparse the sentence with the intervention of some higher-order cognitive process in order to avoid repeating the erroneous pruning; likewise, connectionist models need to appeal to a repair phase where some higher-order cognitive process intervenes by destabilizing the network and inhibiting the wrong analyses, after the network has stabilized on the wrong analysis and realized that it has become stuck.

These beliefs merely represent our subjective reasons for exploring a serial strategy rather than any other heuristic strategy. It should also be noted that a serial strategy is not necessarily incompatible with a connectionist strategy or with some of the other connectionist strategies, although the connection may not be straight-forward. Indeed, although it is clear that the models are not totally identical, we suspect that it may be possible to view our serial model as a high-level approximation to a connectionist model like Vosse and Kempen (2000).

In this section, we have argued that parsing with discontinuous syntax formalisms with optimization is inherently NP-hard, and that the best way to ensure computational efficiency and accommodate the psycholinguistic evidence about garden-paths is to use heuristic rather than exact
optimization-based parsing algorithms. We have briefly presented different heuristic optimality-based parsing strategies proposed in the literature, and presented our psychologically motivated reasons for preferring serial parsing with repair. In the remainder of this chapter, we will specify our parsing model in more detail, and show how the choice of a serial parser with repair restricts our choice of syntax formalism.

1.3 Serial parsing with repair based on local search

Summary. We present local search, an optimization strategy which has been used with great success in many NP-hard optimization problems, including the Travelling Salesman Problem. We explain how the successful application of local search has depended crucially on finding neighbourhoods that are small enough to lead to computational efficiency, but large enough to escape local optima that fail to be global optima. We then outline our ideas for using local search to model human parsing, and sketch how the difficult trade-off between precision and efficiency affects the choice of parsing operations.

In the previous section, we saw that discontinuous dependency-based optimality parsing has many similarities with the Travelling Salesman Problem, one of the most well-known problems in computer science. In TSP, the best heuristic strategies are all based on local search in one form or another (cf. Johnson and McGeoch 1997). Although there is no guarantee that the best algorithms for TSP are also the best algorithms for optimality parsing, it is natural to consider algorithms based on local search when trying to find good algorithms for optimality parsing. Some work has been done in this direction, including (Kromann 2001) and (Schulz 2000; Daum and Menzel 2002). We will follow the strategy outlined in (Kromann 2001).

Negative results have been proven for TSP, and they are important because they tell us what kinds of algorithms we can reasonably hope for. The best solution would be an exact polynomial algorithm, but the NP-hardness of TSP proves that such an algorithm is impossible unless $P = NP$, which is highly unlikely.\(^9\) The second-best solution would be an ε-
approximate polynomial algorithm (Papadimitriou and Steiglitz 1982, p. 409), ie, a polynomial algorithm that returns a solution whose cost is at most the fraction \(\epsilon \) larger than the globally optimal solution. Such an algorithm would not always produce a globally optimal solution, but it would at least give us some knowledge about the worst-case relative error of any solution. Unfortunately, it has been proven that there is no \(\epsilon \)-approximate polynomial algorithm for the TSP for any \(\epsilon > 0 \) unless \(P = NP \) (Papadimitriou and Steiglitz 1982, p. 427), so this is more than we can reasonably hope for as well. Thus, if we want a polynomial algorithm for solving TSP and the even more general Discontinuous Dependency-based Optimality Parsing problem, we can only hope for a heuristic algorithm where we have no knowledge about the relative error of the solutions.

Local search was made famous when Lin (1965) used it to solve large instances of TSP, and it has often turned out to be the best heuristic algorithm available for many NP-hard problems (cf. Papadimitriou and Steiglitz 1982, p. 481). The basic idea behind local search is to select an initial solution, modify it incrementally with a series of cost-decreasing changes, and return the final solution when no further improvement is possible. Local search is guaranteed to find a local optimum, and in problems that are suited to local search, this local optimum will often be globally optimal.

Definition 1.15. Let \((S, c)\) be an optimization problem with search space \(S \) and cost function \(c: S \to \mathbb{R} \), and let \(N: S \to \text{Pow}(S) \) be a neighbourhood function that assigns a neighbourhood to each solution in \(S \). The algorithm for general local search shown in Figure 1.4 can be used to compute a heuristic solution \(s \) to the optimization problem (cf. Papadimitriou and Steiglitz 1982, p. 454). The subroutine \(\text{improve}(s) \) searches for an improvement \(n \) of a solution \(s \) within the neighbourhood of \(s \), and is given by:

\[
\text{improve}(s) = \begin{cases}
\text{any } n \in N(s) \text{ with } c(n) < c(s) \text{ if such an } n \text{ exists} \\
'\text{no}' \text{ otherwise}
\end{cases}
\]

The subroutine can be implemented in two ways: in a first-improvement strategy, the subroutine returns the first solution within the neighbourhood having a smaller cost, thus avoiding a possibly costly search of the entire neighbourhood, whereas in a best-improvement (or steepest descent) strategy,
1.3. Serial parsing with repair based on local search

Figure 1.4: The algorithm for general local search.

```
procedure local search
begin
    s := some initial starting point in S;
    while improve(s) ≠ ‘no’ do
        s := improve(s);
    return s;
end
```

Figure 1.5: An illustration of local search.

the subroutine searches the entire neighbourhood and returns a solution
whose cost is minimal within the neighbourhood.

Definition 1.16. Let \((S, c)\) be an optimization problem with search space
\(S\) and cost function \(c: S \rightarrow \mathbb{R}\), and let \(N: S \rightarrow \text{Pow}(S)\) be a neighbourhood
function. A solution \(s \in S\) is called locally optimal with respect to \(N\) and \(c\)
whenever \(c(s) \leq c(n)\) for all \(n \in N(s)\). A neighbourhood \(N\) is called exact
if all locally optimal solutions are globally optimal as well.

Example 1.17. The local search algorithm is illustrated in Figure 1.5. Local
neighbourhoods around points in the search space are shown with gray
circles. The gray area along a search path therefore represents the part of
the search space that is actually searched by the algorithm, whereas the
white area represents the part of the search space that is pruned away. The
algorithm first selects an initial solution (e.g., \(A\) or \(B\)). In each step, it then
searches the neighbourhood of the current solution for an improved solu-
Chapter 1. Motivation and overview

Figure 1.6: Two tours related by a 2-change operation.

tation that can be selected as the new current solution, and stops when the current solution is locally optimal. Starting point A results in a globally optimal solution, whereas B only results in a locally optimal solution.

When applying local search to TSP, it is natural to use the k-change neighbourhoods defined formally below.

Definition 1.18. In the Travelling Salesman Problem, the k-change neighbourhood of a tour t is the set of all tours that can be obtained from t by removing k edges and replacing them with k new edges.

Example 1.19. Figure 1.6 shows how the tour $(1, 2, 3, 4, 5, 6, 7)$ is obtained from the tour $(1, 2, 3, 5, 4, 6, 7)$ by a 2-change operation that removes the edges $3 \leftrightarrow 5$ and $4 \leftrightarrow 6$, and replaces them with the edges $3 \leftrightarrow 4$ and $5 \leftrightarrow 6$.

Remark 1.20. In TSP, the size of a k-change neighbourhood grows quickly with k. It is difficult to calculate the exact number of tours in a k-change neighbourhood, but an upper bound for the TSP with directed tours is given by $(k-1)! \binom{n}{k}$. When $k = n$, the k-change neighbourhood contains all $(n-1)!$ different tours.

Lin (1965) empirically demonstrated the power of 3-change neighbourhoods in TSP. He found that 2-change neighbourhoods usually resulted in a suboptimal local optimum, whereas 4-change neighbourhoods were much more computationally expensive than 3-change neighbourhoods, resulting only in a marginal improvement in terms of precision (cf. Papadimitriou and Steiglitz 1982, p. 456). Although optimality parsing differs from

Calculation: The tour contains n edges, and there are $\binom{n}{k}$ different ways of deleting k edges. After the deletion, we have a graph with k connected components, which can be ordered in at most $(k-1)! \binom{n}{k}$ different ways, when the component containing city 1 must be selected as the first component. This means that there are at most $(k-1)! \binom{n}{k}$ different tours in the k-change neighbourhood.
TSP in many respects, the general experience from TSP and other hard optimization problems is that the choice of neighbourhoods is crucial for the success of local search. If neighbourhoods are chosen too small, local search may be unable to escape non-global local optima. If neighbourhoods are chosen too large, too much time is spent searching the local neighbourhoods, without significantly affecting the ability to escape non-global local optima.

The insights from TSP and other hard optimization problems should guide our choice of neighbourhoods when applying local search to optimality parsing. A first step in this direction is to note that most syntax formalisms embody a sensible notion of k-change neighbourhoods.

Definition 1.21. In the search space consisting of all dependency graphs, we can define the k-change neighbourhood of a dependency graph d as the set of all dependency graphs that can be obtained from d by removing at most k edges, and adding at most k new edges.

Definition 1.22. In the search space consisting of all phrase-structure graphs, we can define the k-change neighbourhood of a phrase-structure graph p as the set of all phrase-structure graphs that can be obtained from p by removing at most k non-terminal nodes or edges, and adding at most k new non-terminal nodes or edges.

The parsing algorithm below is an adaptation of local search where the speech signal is represented as a sequence of segments that are appended incrementally to the current analysis in temporal order whenever a local optimum is reached, and where neighbourhoods around analyses are defined by means of parsing operations that modify the analysis in some way — for example, neighbourhoods could be defined by means of k-change operations.

Definition 1.23. Let \mathcal{A} be the set of all partial analyses within some linguistic formalism, let $c : \mathcal{A} \rightarrow \mathbb{R}$ be the cost measure induced by some grammar, and let $\pi_1, \ldots, \pi_k : \mathcal{A} \rightarrow \text{Pow}(\mathcal{A})$ be a set of associated parsing operations. The algorithm for local optimality parsing (LOP) shown in Figure 1.7 can be used to compute a locally optimal analysis for the segmented speech signal $s = (s_1, \ldots, s_n)$. The subroutine $\text{improve}(a)$ searches for an improvement a' that can be obtained by applying a parsing operation π_i to a, and is given
procedure local optimality parsing (LOP)
begin
 s := segmented speech signal;
 a := empty analysis;
 while s is non-empty or improve(a) ≠ ‘no’ do
 if improve(a) = ‘no’ then
 a := partial analysis obtained by appending s₁ to a;
 s := s minus first segment s₁;
 else
 a := improve(a);
 end
 return a;
end

Figure 1.7: The LOP algorithm for local optimality parsing.

by:

\[
\text{improve}(a) = \begin{cases}
\text{any locally optimal } a' \in \bigcup_{i=1}^{K} \pi_i(a) \text{ with } c(a') < c(a) & \text{if such an } a' \text{ exists;} \\
\text{‘no’ otherwise}
\end{cases}
\]

Local optimality parsers can be characterized as serial parsers with repair that process speech signals incrementally. These notions are defined formally below.

Definition 1.24. A parser is called *serial* if it maintains only one analysis at a time. A serial parser that can only add new nodes and edges to its current analysis is called a *serial parser without repair*, and a parser that is also allowed to change nodes and edges in its current analysis is called a *serial parser with repair*. A serial parser is called *incremental* if it does not process a speech segment starting at time \(t \) before it has attempted to produce a locally optimal analysis for the entire speech signal up to time \(t \).

Most psycholinguistic theories of parsing assume that parsing is incremental, ie, that we interpret sentences as we hear them, without waiting for the completion of the sentence. The requirement of incrementality dictates the local optimality parser’s use of the empty analysis as its initial analysis in Algorithm 1.7.
1.4 How the choice of analysis space affects parsing

Local optimality parsing is a general algorithm which leads to different parsers depending on the particular choice of parsing operations and underlying analysis space. It is therefore relevant to ask whether certain kinds of analysis space are better suited to local optimality parsing than others, and whether we can identify parsing operations which are neither so weak that the local optimality parser fails on many naturally occurring constructions, nor so powerful that parsing becomes too time-consuming to be computationally realistic. In the following section, we will start by examining the analysis space. In section 7.2, we will then return to how we can design parsing operations that are neither too powerful, nor too weak.

1.4 How the choice of analysis space affects parsing

Summary. We explain how the success of local optimality parsing depends on the choice of analysis space. Based on the notion of edit distance between alternative analyses in syntactic ambiguities, we argue that in a local optimality parser, dependency analyses can be expected to work better than phrase-structure analyses, and discontinuous analyses can be expected to work better than continuous analyses.

The success of local optimality parsing depends crucially on the existence of neighbourhoods that are large enough to allow the parser to escape local optima, but small enough to be computationally tractable. In local optimality parsing, local optima are usually caused by local garden-paths, in which an analysis that appears to be optimal at one point in time becomes suboptimal at a later time, after new speech segments have been added to the analysis. This notion is defined formally below.

Definition 1.25. Let \mathcal{A} be an analysis space with ill-formedness measure $c: \mathcal{A} \to \mathbb{R}$. A segmented speech signal $s = (s_1, \ldots, s_n)$ is said to contain a local garden-path at position k with disambiguating region $(s_{k+1}, \ldots, s_{k+d})$ where $d \geq 1$, if (a) no optimal analysis of (s_1, \ldots, s_k) is a subgraph of any optimal analysis of (s_1, \ldots, s_{k+d}), and (b) the number d is minimal in this respect.

Example 1.26. An example of a local garden-path in English is given in (1a) and (1b) below, where incrementality forces the human parser to decide on an analysis of the speech input “I saw the man with” before it sees the disambiguating input, ie, the parser must decide whether “with” specifies
the manner of seeing (VP-attachment), or whether it specifies a property of the man (NP-attachment).

\begin{align*}
(1a) & \text{I saw the man with \ldots my own eyes.} & \text{(VP-attachment)} \\
(1b) & \text{I saw the man with \ldots the funny hat.} & \text{(NP-attachment)}
\end{align*}

The human parser can either decide to analyze “I saw the man with” by means of NP-attachment or VP-attachment. If it chooses an NP-attachment analysis first, then (1a) will turn out to be a local garden-path when the parser, after reading the disambiguating region “my own eyes,” discovers that it should have chosen a VP-attachment analysis instead of an NP-attachment analysis. Similarly, if it chooses a VP-attachment analysis first, then (1b) will turn out to be a local garden-path.

In order to escape from a local garden-path, the neighbourhood of the erroneous garden-path analysis must contain the correct analysis, or at least a lower-cost analysis that can lead the parser in the right direction towards the correct analysis. In order to estimate how large the neighbourhoods have to be for the parser to escape, it is convenient to have some measure of the distance between two alternative analyses in an ambiguity. To this end, we will define the concept of edit distance, based on the notion of k-change neighbourhoods presented in Definition 1.21 and 1.22.

Definition 1.27. The edit distance between two analyses a and a' is the smallest k that allows a' to be obtained from a by a k-change operation.

Since the time needed to search a k-change neighbourhood tends to grow exponentially with k, computationally efficient local optimality parsers must restrict themselves to relatively small k, for example, $k = 3$. The success of local optimality parsing therefore depends crucially on the edit distance between alternative analyses in ambiguous constructions: if the edit distance is small, alternative analyses will fall within the largest k-change neighbourhood searched by the parser and can therefore be selected by $\text{improve}(a)$; but if the edit distance is large, the alternative analyses will become invisible to $\text{improve}(a)$.

Phrase-structure analyses or dependency analyses?

In general, the edit distance between alternative analyses depends on the choice of analysis space. For example, the edit distance between alternative
1.4. How the choice of analysis space affects parsing

Figure 1.8: Edit distance 5 between two alternative phrase-structure analyses of a PP-attachment ambiguity.

Figure 1.9: Edit distance 1 between two alternative dependency analyses of the PP-attachment ambiguity in Figure 1.8.

phrase-structure analyses tends to be larger than the edit distance between alternative dependency analyses, as illustrated below.

Example 1.28. In the PP-attachment ambiguity in Figure 1.8, the two phrase-structure analyses are related by a 5-change operation that replaces one node and four edges with another node and another four edges (shown in bold and with dotted lines). The two corresponding dependency analyses in Figure 1.9 are related by a 1-change operation that replaces a single edge with another edge (shown with dotted lines). The dependency representation therefore results in a lower edit distance for the PP-attachment ambiguity than the phrase-structure representation.

In order to understand why dependency analyses and phrase-structure analyses differ with respect to edit distance, we first need to understand the relation between them.

Remark 1.29. All dependency theories assume that grammatical relations can be expressed as relations between pairs of words. This means that dependency analyses can be encoded as graphs consisting of nodes that represent words, and labelled directed edges that go from one word (called
Chapter 1. Motivation and overview

Figure 1.10: Three isomorph representations of a dependency graph: arc graph (left), classical dependency graph (middle), and phrase-structure graph in which each phrase is lexically headed (right).

the head) to another word (called the subordinate). Dependency graphs can be drawn either as arc graphs, where the words are placed on a long line, and the directed edges are drawn on top of the words (Figure 1.10 left), or as classical dependency graphs, where heads are placed above their subordinates, and the directed edges are drawn from the head down to the subordinate (Figure 1.10 middle). In dependency graphs, information about word class etc. can be drawn either next to or right below each word.

Phrases are a derived notion in dependency theory: each word heads an associated phrase, which consists of the word itself and all words in the dependency graph that can be reached from the word by following the directed edges. This allows us to translate a dependency graph into an equivalent phrase-structure graph in which each phrase has a lexical head. To do so, we must replace each node in the dependency graph with two nodes in the phrase-structure graph: a terminal node that encodes the word, and a non-terminal node that encodes the word class. Figure 1.10 (right) shows the phrase-structure graph corresponding to the dependency graphs in Figure 1.10. The phrase-structure graph would look even more familiar if we also replaced lexical categories (eg, “N”, “V”, “P”) with the corresponding phrasal categories (eg, “NP”, “VP”, “PP”).

Remark 1.30. In light of Remark 1.29, general phrase-structure graphs can be viewed as dependency graphs with additional non-lexically headed nodes. The three main sources of these additional nodes are that: (a)

11 The arc graph layout is used in a number of dependency theories, eg, Word Grammar (Hudson 1990). In this dissertation, we will draw dependency graphs with the arc graph layout, because it has many advantages when it comes to drawing general graphs with cyclicity, multiple heads, and discontinuous edges, and large graphs that must be split across several lines and pages.
phrase-structure theories tend to encode complements and adjuncts structurally by means of Xbar theory (Figure 1.11 left), whereas dependency theories use a flat structure where complements and adjuncts are encoded by means of edge labels (Figure 1.11 right); (b) phrase-structure theories often posit phrasal nodes that lack a lexical head, such as the sentence node “S”; and (c) some phrase-structure theories (in particular the Chomskyan tradition) posit a large number of phrases with phonetically empty functional categories for tense, agreement, etc., which are encoded lexically in dependency theories.

The additional nodes in phrase-structure analyses mean that the edit distance between alternative analyses in ambiguous constructions tends to be larger in phrase-structure theories than in dependency theories — how much larger depends on how many additional nodes the phrase-structure theory posits. The larger edit distance does not entirely rule out the possibility of creating computationally efficient local optimality parsers based on phrase-structure analyses, provided the neighbourhoods are designed in a clever way, but it does complicate the design of the parser and its parsing operations because the parser needs to modify a larger number of nodes and edges in each parsing step. Dependency analyses can therefore be expected to work better with local optimality parsing than phrase-structure analyses, and have therefore been chosen as the basis of local optimality parsing in this dissertation.\(^\text{12}\)

\(^{12}\)Other representations based on neither phrase structure nor dependency structure (eg,
Chapter 1. Motivation and overview

Continuous or discontinuous analyses?

Natural languages contain many examples of discontinuous phenomena, and discontinuity is therefore a central concern in most syntactic theories. The encoding of discontinuous phenomena is as important for the feasibility of local optimality parsing as the choice between dependency and phrase structure.

Definition 1.31. The relationship between a complement or adjunct D and its head H is called a *continuous dependency* if all words between D and H are contained in the phrase headed by H, and a *discontinuous dependency* otherwise.

Example 1.32. In example (2), almost all linguistic theories agree that “which museum” must be analyzed as a discontinuous complement of “from.”

(2) Which museum did he steal the paintings from?

However, linguistic theories differ with respect to how discontinuous dependencies should be encoded in linguistic analyses. There are basically two ways of doing it: the discontinuous dependency can either be represented *directly* in a discontinuous analysis graph by an edge between the dependent and the governor (Figure 1.12), or *indirectly* in a continuous analysis graph by attaching the dependent to a special landing site and marking each node on the path connecting the governor and the landing site in representations based on packed charts, underspecified constructions as in LFG, etc.) might turn out to be as good as dependency analyses in terms of edit distance, if neighbourhoods were cleverly designed. However, in the absence of a better alternative, we are content with using dependency analyses and leaving it to others to explore alternative representations.
1.5. How the choice of analysis space affects parsing

Figure 1.13: An example of an indirect encoding of discontinuity with a continuous phrase-structure graph.

Historically, the indirect encoding has been dominant within phrase-structure grammars, eg, the Chomskyan school of syntax, GPSG (Gazdar et al. 1985), and early HPSG (Pollard and Sag 1994). In contrast, the direct encoding has been dominant within dependency theories, eg, Tesnière (1953), Melcuk (1988), Hudson (1990, 2003), and Hellwig (2003). However, this is only a tendency, and the direct encoding has been used, at least to some degree, in phrase-structure grammars such as LFG (Dalrymple et al. 1994) and in discontinuous versions of HPSG (see Müller (2004) for an overview).

The way we have defined edit distance, the indirect encoding leads to a larger edit distance for discontinuous dependencies than the direct encoding, because we need to modify all the arbitrarily many nodes on the path between the governor and the landing site, instead of only changing the graph locally at a few nodes or edges around the dependent. This means that local optimality parsing can be expected to work better with direct encodings than with indirect encodings, at least if we want to restrict ourselves to neighbourhoods that can be contained within k-change neighbourhoods for small k.13

13We could conceivably construct isomorphic mappings between direct and indirect encodings that would allow us to design computationally efficient neighbourhoods for indirect encodings, even if these neighbourhoods were not contained in a k-change neighbourhood for...
1.5 Summary

In this chapter, we have seen that human grammars can be viewed as utility measures that assign a cost to all possible analyses, and that parsing and generation can be viewed as optimization problems. We have argued that these optimization problems are NP-hard and require heuristic algorithms for their solution, and we have proposed to use local optimality parsing as our heuristic algorithm. Finally, we have argued that local optimality parsing works best if the distance between alternative analyses in ambiguous constructions is low, and that analysis spaces based on discontinuous dependency graphs work best in this respect.

Our ideas about analysis spaces, ill-formedness measures, parsing, and learning will be described in detail in the remainder of the dissertation. In chapters 2 and 3, we will introduce the formal machinery needed to specify analysis spaces and their associated ill-formedness measures within our discontinuous dependency framework. In chapter 4, we will show how this formal framework can be used to provide analyses for a wide range of linguistic phenomena. In chapters 5 and 6, we will introduce the formal machinery needed to specify probabilistic dependency grammars whose probabilities are estimated from treebank data. Finally, in chapter 7, we will describe local optimality parsing in more detail and examine different sets of parsing operations.

any small fixed k. However, while this approach may be feasible, we think it is more straightforward to choose a direct encoding because it does not require a very ingenious design of neighbourhoods in order to work with local optimality parsing.
Part II

Syntax formalism
Chapter 2

The analysis space: how lexemes license edges in the graph

We describe how lexemes are organized in a multi-hierarchical default inheritance lexicon that allows lexical rules to be encoded without redundancy, and how lexical transformations are used to account for inflections, passives, and similar constructions. We then define analyses as dependency graphs whose nodes and edges are licensed by lexical rules that describe the possible complements, adjunct governors, landed nodes, fillers, and gapping fillers for a lexeme.

As we saw in the previous chapter, local optimality parsing presupposes an analysis space and an ill-formedness measure that can be used to compare different analyses with each other. In continuation of the discussion in section 1.4, we will assume that human language is dependency-based, and that a speaker’s analysis space consists of all conceivable dependency graphs licensed by the speaker’s grammar. The grammar rules in our proposed model will be described in detail in this chapter, and the cost operators that our speakers use to specify ill-formedness measures will be described in chapter 3.

2.1 Dependency graphs

Summary. We define dependency graphs, yields, continuous and discontinuous edges, cyclicity, and multiple heads.
Before proceeding with our inventory of grammar rules, it is useful to define dependency graphs formally. Our dependency graphs will be used to encode several layers of information: deep syntactic dependencies, surface syntactic word order, the relationship between a filler and its filler source, and the relationship between an anaphor and its antecedents. This means that our dependency graphs cannot be encoded as trees, but must be encoded as general directed graphs that may include discontinuity, multiple heads, and acyclicity.

Definition 2.1. A *general dependency graph* is a tuple \(G = (N, E, \lambda, <) \) where

\(N \) is a finite set of nodes that is labeled by the function \(\lambda : N \to \Lambda_n \) where \(\Lambda_n \) is a set of possible node labels, and \(E \) is a set of directed edges in \(N \times N \times \Lambda_e \) where \(\Lambda_e \) is a set of possible edge labels; the non-filler nodes in \(N \) must be linearly ordered by \(< \). An element \((n_1, n_2, r) \) in \(E \) is called a *directed edge* from *head node* \(n_1 \) to *subordinate node* \(n_2 \) with label \(r \), and is often written \(n_1 \xrightarrow{r} n_2 \).

Remark 2.2. Our definition of dependency graphs does not place any restrictions on the set of node labels \(\Lambda_n \) and edge labels \(\Lambda_e \). This means that labels can be complex feature structures as well as atomic values. However, feature structures are not as expressive in our setup as in HPSG because our definition does not allow structure-sharing between feature structures associated with different nodes and edges — this also makes feature structures more computationally efficient in our setup than in HPSG.

In Discontinuous Grammar (DG), node labels are assumed to encode the set of candidate lexemes at a node and the currently selected lexeme from this set of candidate lexemes, along with a feature function that can be used by the parser to encode information about the node.

Definition 2.3. A *DG graph* (or simply *dependency graph*) is a general dependency graph in which every node label is a triple of the form \((f, T, t) \) where \(f \) is a local feature function that contains the feature specifications associated with the node, \(T \) is the set of all potential lexemes associated with the node, and \(t \) is a member of \(T \) that has been singled out as the node’s *active lexeme*; the remaining lexemes in \(T \) are called the *non-active lexemes* associated with the node.

The notions of yield, domination, discontinuity, cyclicity, and multiple heads are defined below.
Definition 2.4. In a dependency graph G, the yield of a node n with subordinates s_1, \ldots, s_k is defined recursively as the set

$$Y_G(n) = \{n\} \cup Y_G(s_1) \cup \ldots \cup Y_G(s_k)$$

consisting of n and the yields of its subordinates.

Definition 2.5. A node n in a dependency graph G is said to dominate another node n' if n' is contained in the yield of n. The dominance is called strict if $n \neq n'$.

Definition 2.6. An edge $h \rightarrow s$ in a dependency graph G is called discontinuous if there exists a non-filler node b that lies between h and s in the linear word order such that b is not contained in the yield $Y_G(h)$, and continuous otherwise. A dependency graph G is called discontinuous if it contains a discontinuous edge, and continuous otherwise.

Definition 2.7. A dependency graph G is called cyclic if it contains a path consisting of the edges $n_1 \rightarrow n_2, n_2 \rightarrow n_3, \ldots, n_{k-1} \rightarrow n_k$ where $n_1 = n_k$, and acyclic otherwise.

Definition 2.8. A node n in a dependency graph G is said to have multiple heads if G contains more than one edge where n is the subordinate node.

Having defined our dependency graphs and our notions of yield, discontinuity, cyclicity, and multiple heads, we can now proceed with defining our dependency lexicons.

2.2 The lexicon: multiple inheritance with defaults

Summary. We describe a default multiple inheritance lexicon with type transformations and dynamic feature functions, and a type specification language that can be used in lexical entries to identify nodes in a dependency graph based on their structural and lexical properties.

In our linguistic model, we assume that the lexicon stores all information associated with the linguistic units in the language. Following standard terminology, these units are called types, and may represent both words, morphemes, and idioms. We also assume that types are organized in a prioritized multiple inheritance lexicon with defaults (cf. Briscoe et al.)
1993, 40), so that types can inherit properties from supertypes, thereby allowing the lexicon to be encoded compactly.

In the following, we let F denote a set of possible features with four distinguished features: super, tfuncs, transforms, and dynamic. We also let V denote a set of possible feature values with two distinguished values: undef (undefined value) and null (null value).

Definition 2.9. A local feature function is a function $f : F \rightarrow V$ that maps a feature $x \in F$ into a local feature value $f(x)$.

Definition 2.10. A finite set $L = \{f_t\}_{t \in T}$ of local feature functions is called a prioritized multiple inheritance lexicon with defaults (or simply an inheritance lexicon) with types T provided $f_t(\text{super})$ is an ordered list of types whose elements are called the ordered supertypes of t.

Definition 2.11. For each type t in an inheritance lexicon $L = \{f_t\}_{t \in T}$, the inherited feature function $F_t : F \rightarrow V$ is defined recursively by:

$$F_t(x) = f_t(x) \mid\mid F_{s_1}(x) \mid\mid \ldots \mid\mid F_{s_n}(x) \mid\mid \text{undef}$$

where s_1, \ldots, s_n are the ordered supertypes of t, and $a \mid\mid b$ is defined by:

$$a \mid\mid b = \begin{cases}
 a & \text{if } a \neq \text{undef} \text{ and } a \neq \text{null} \\
 b & \text{if } a = \text{undef} \\
 \text{undef} & \text{if } a = \text{null}
 \end{cases}$$

In our setup, the inherited feature function is well-defined regardless of whether the super feature defines an acyclic graph structure on T or not. However, in most situations, it is reasonable to follow standard practice and require the lexicon to be hierarchical in the sense defined below.

Definition 2.12. A lexicon $L = \{f_t\}_{t \in T}$ is called hierarchical if the super feature defines an acyclic graph structure on T, ie, no type in T is the transitive supertype of itself.

Example 2.13. Two examples of hierarchical inheritance lexicons are shown in Figure 2.1. The lexicon on the left specifies all feature values locally, ie,
2.2. The lexicon: multiple inheritance with defaults

\[F_t(x) = f_t(x) \] for all \(t \) and \(x \), but is inefficient because feature values that are shared between many types must be specified locally at every type rather than shared by means of inheritance. The lexicon on the right uses inheritance to obtain a more compact encoding that introduces the two supertypes NOUN and BIRD; here we have \(F_{\text{goose}}(\text{flies}) = f_{\text{BIRD}}(\text{flies}) = + \), but \(f_{\text{goose}}(\text{flies}) = \text{undef} \), i.e., the value of the feature \(\text{flies} \) in \(\text{goose} \) is inherited from \(\text{BIRD} \).

In some cases, it is useful to be able to combine two types \(a \) and \(b \) into a composite type that is a subtype of both \(a \) and \(b \).

Definition 2.14. Let \(a, b \) be types in an inheritance lexicon \(L \). Then \(a \ast b \) is a composite type that denotes a type that has an empty local feature function and \(a, b \) as its supertypes.

In the program DTAG, our computational implementation of the theory presented in this thesis, the lexicon is encoded in a lexicon file where types, supertypes, and feature values are specified with the following code.

Pseudocode 2.15. The function \(\text{type}(t) \) returns the object associated with the type \(t \) in the lexicon; the object is created if it did not exist in the lexicon before. The method \(\text{type}(t)\rightarrow\text{set}(f, v) \) sets the local feature \(f \) to the value \(v \) in the type \(t \), and returns \(t \). The method \(\text{type}(t)\rightarrow\text{get}(f) \) returns the inherited value associated with the feature \(f \), and \(\text{type}(t)\rightarrow\text{get}(\text{regexp}) \) returns a hash table containing all feature-value pairs whose feature matches the regular expression \(\text{regexp} \). The method \(\text{type}(t)\rightarrow\text{super}(s_1, \ldots, s_n) \) specifies that \(s_1, \ldots, s_n \) are the ordered supertypes associated with \(t \), and returns \(t \).\(^2\)

\(^2\)The method \(\text{type}(t)\rightarrow\text{super}(\{s_1, \ldots, s_n\}) \) is implemented as an abbreviation for the method \(\text{type}(t)\rightarrow\text{set}(\text{super}, \{s_1, \ldots, s_n\}) \).
Example 2.16. The example below shows how the types NOUN, BIRD, and penguin in the inheritance lexicon in Figure 2.1 (right) are encoded in DTAG:\footnote{DTAG is implemented in Perl, and the DTAG encoding in Example 2.16 is actually Perl code that is compiled by Perl when the lexicon is loaded. Perl will guess that character sequences like NOUN and BIRD should be interpreted as strings (rather than procedure calls), which can be specified unambiguously by enclosing them in single or double quotes. In the text, we have avoided quotes whereever possible to preserve readability. But in real DTAG lexicons, it is safer to specify the quotes explicitly.}

\[
\begin{align*}
type(\text{NOUN}) & \rightarrow \text{set}(\text{cat, N}); \\
type(\text{BIRD}) & \rightarrow \text{set}(\text{flies, ' + '}); \\
type(\text{penguin}) & \rightarrow \text{super}(\text{NOUN, BIRD}) \rightarrow \text{set}(\text{flies, ' - '});
\end{align*}
\]

To encode inflectional morphology and lexical alternations as compactly as possible in the lexicon, it is convenient to have transformations that allow us to create a new type by transforming a source type with a transformation type. The transforms feature of the source type specifies all the transformation types that are licensed by the source type, and the tfuncs feature of the transformation type encodes how the transformed type is computed from the transformation type and the source type.

Definition 2.17. Let \(L = \{f_t\}_{t \in T} \) be an inheritance lexicon. A type \(t \in T \) is called a transformation type if \(F_t(\text{tfuncs}) \) is an ordered list \((\phi_1, \ldots, \phi_k)\) of functions \(\phi_i \) that given \(t \) and a source type \(s \in T \) with \(t \in F_s(\text{transforms}) \) computes a local feature function \(\phi_i(s, t) : F \rightarrow V \). We call the \(\phi_1, \ldots, \phi_k \) the transformation functions associated with \(t \), and we call
\[
f_{s,t} = \phi_1(s, t) \mid \ldots \mid \phi_k(s, t) \mid F_s
\]
the local feature function associated with the transformed type \(s.t \).

Definition 2.18. An inheritance lexicon \(L = \{f_t\}_{t \in T} \) is called transformational provided (a) each \(F_s(\text{transforms}) \) is an unordered list of transformation types, and (b) \(s.t \in T \) and \(f_{s,t} \) is the local feature function associated with the transformed type \(s.t \), for each \(s, t \in T \) with \(t \in F_s(\text{transforms}) \).

In the DTAG lexicon, it is convenient to be able to specify licensed transformations and transformation functions independently of each other, rather than as a list. For that reason, we will assume the DTAG lexicon allows a feature value to be computed as the list of all feature values with a feature that matches a given regular expression.
2.2. The lexicon: multiple inheritance with defaults

Pseudocode 2.19. In a type \(t \), the feature value \(\text{listof}(\text{regexp}) \) returns a list containing all (non-dynamic) feature values \(v_i \) of \(t \) with feature \(f_i \) where \(f_i \) matches the regular expression \(\text{regexp} \), with the \(v_i \) sorted alphabetically with respect to the feature name \(f_i \).

Remark 2.20. Using the \(\text{listof} \) feature value, we can specify in the DTAG lexicon that the \(\text{transforms} \) and \(\text{tfuncs} \) feature values should be computed as the lists of all transformations and transformation functions associated with the type, using the following code:

\[
\begin{align*}
type(\text{word}) & \rightarrow \text{set}(\text{transforms}, \text{listof}('/\text{transform}:/')) \\
& \rightarrow \text{set}(\text{tfuncs}, \text{listof}('/\text{tfunc}:/'));
\end{align*}
\]

Transformations and transformation functions can then be specified in the DTAG lexicon as follows.

Pseudocode 2.21. The method \(\text{type}(s) \rightarrow \text{transform}(name, t) \) specifies that the source type \(s \) licenses the transformation type \(t \), using \(name \) as identifier. Similarly, the method \(\text{type}(t) \rightarrow \text{tfunc}(name, prefix, sub) \) specifies that the transformation type \(t \) is associated with the transformation function \(sub \), using \(name \) as identifier and sortkey, and that \(sub \) returns a feature function whose feature names begin with \(prefix \). The transformation function \(sub \) is encoded as a Perl subroutine that returns a Perl hash containing all generated feature-value pairs when called as \&sub\((s, t)\) where \(s \) is the source type.\(^4\)

The example below illustrates how type transformations can be used to encode plurals in the DTAG lexicon, without having to create more than one type for each base form. We will present a more sophisticated encoding of morphology in Section 4.7.

Example 2.22. The lexical entry below specifies that all nouns are singular and license a \(\text{pl} \) transformation with the transformation type \(\text{pl:s} \) by default; that the types \(\text{tiger} \), \(\text{elephant} \), and \(\text{glass} \) are nouns; and that \(\text{glass} \) licenses a \(\text{pl} \) transformation with the transformation type \(\text{pl:es} \) instead of \(\text{pl:s} \).

\(^4\)The method \(\text{type}(t) \rightarrow \text{transform}(name, t) \) is implemented as an abbreviation for \(\text{type}(t) \rightarrow \text{set}('\text{transform}:name', t) \). Similarly, the method \(\text{type}(t) \rightarrow \text{tfunc}(name, prefix, sub) \) is implemented as an abbreviation for \(\text{type}(t) \rightarrow \text{set}('\text{tfunc}:name', [prefix, sub]) \).
Chapter 2. The analysis space: how lexemes license edges in the graph

\[
\text{type(noun)} \rightarrow \text{set(num, sg)} \rightarrow \text{transform(pl, \text{"pl:s"})};
\]
\[
\text{type(tiger)} \rightarrow \text{super(noun)};
\]
\[
\text{type(elephant)} \rightarrow \text{super(noun)};
\]
\[
\text{type(glass)} \rightarrow \text{super(noun)} \rightarrow \text{transform(pl, \text{"pl:es"})};
\]
\[
\ldots
\]

The transformation types \text{pl:s} and \text{pl:es} are defined as subtypes of \text{pl}, with suffixes “s” and “es”, respectively. Their supertype \text{pl} specifies two transformation functions: the num transformation function assigns “pl” to the feature “num”, and the “phon” transformation function creates a new phon feature value by concatenating the source type’s phon feature value with the transformation type’s suffix feature value.

\[
\text{type(\text{"pl:s"})} \rightarrow \text{super(pl)} \rightarrow \text{set(suffix, s)};
\]
\[
\text{type(\text{"pl:es"})} \rightarrow \text{super(pl)} \rightarrow \text{set(suffix, es)};
\]
\[
\text{type(pl)}
\rightarrow \text{tfunc(num, num, sub \{return \{num=>pl\}\})}
\rightarrow \text{tfunc(phon, phon, sub \{my \{\$s,\$t\} = @_; return \{phon=>\$s=>get(phon). \$t=>get(suffix)\};\})};
\]

To encode filler constructions such as relatives, it is convenient to have dynamic feature functions that depend on the dependency graph surrounding the node with which the type is associated. This allows a dynamic type to mirror the feature-value pairs of another node in the graph, or to compute complement frames or semantic interpretations dynamically on the basis of types associated with lexemes in the nearby graph structure. Dynamic feature functions will be illustrated in Example 2.86.

Definition 2.23. A dynamic feature function is a function \(d\) that given a dependency graph \(G\) and a node \(n\) computes a local feature function \(d(G, n): \mathcal{F} \rightarrow \mathcal{V}\).

Definition 2.24. An inheritance lexicon \(L = \{f_t\}_{t \in T}\) is called dynamic if \(F_t(\text{dynamic})\) is an ordered list of dynamic feature functions for each \(t \in T\).

Definition 2.25. Given a dynamic inheritance lexicon \(L\) and a type \(t\) with inherited feature function \(F_t\) and dynamic feature functions \(F_t(\text{dynamic}) = (d_1, \ldots, d_k)\), we define the dynamic inherited feature function \(F^*_t\) associated with \(t\) by:

\[
F^*_t(G, n) = d_1(G, n) || \ldots || d_k(G, n) || F_t
\]
Remark 2.26. Using the listof feature value, we can specify in the DTAG lexicon that the dynamic feature value should be computed as the alphabetically ordered list of all dynamic transformations encoded in a feature prefixed by "dynamic:”, using the following code:

\[
\text{type(word) -> set(dynamic, listof('\text{\textbackslash{dynamic}:s')}});\]

Pseudocode 2.27. The method \(\text{type(t)}\rightarrow\text{setd(name, prefix, sub)}\) specifies that the type \(t\) has a dynamic feature function \(\text{sub}\) whose generated features start with \(\text{prefix}\), using \(\text{name}\) as identifier and sortkey.\(^5\) The dynamic feature function \(\text{sub}\) is encoded as a Perl subroutine that returns a Perl hash containing all dynamically generated feature-value pairs when called as \&\text{sub}(G, n). The method \(G\rightarrow\text{getd}(n, \text{regexp})\) returns a hash containing all dynamic inherited feature-value pairs induced by \(F_t^*(G, n)\) at the node \(n\) in the graph \(G\) for which the feature prefix and feature name matches the regular expression \(\text{regexp}\), where \(t\) is the active lexeme associated with \(n\). The method \(G\rightarrow\text{get}(n, f)\) returns the dynamic value \(F_t^*(G, n)\) associated with the feature \(f\) of the active lexeme \(t\) for node \(n\) in graph \(G\).

In lexical descriptions, we often need to restrict the nodes and edges to which a rule applies. We will do this by means of the type specification language presented below, which allows us to test whether a particular node or edge has particular structural or lexical properties.

Definition 2.28. An edge is called pointed if one of its two nodes has been marked as pointed node. The notation \(h \xrightarrow{r} s\) is used for pointed edges with pointed node \(h\), and \(s \xleftarrow{r} h\) is used for pointed edges with pointed node \(s\). In a node context, the pointed edge refers to the associated node; in an edge context, the pointed edge refers to the associated edge. Pointed edges are always interpreted in node context, unless specified otherwise.

Definition 2.29. A type specification is an expression associated with a particular node in a dependency graph \(G\) that is built up from the simple expressions in Figure 2.2 and 2.3. The parentheses in type specifications are often omitted if the resulting expression is unambiguous.

Example 2.30. In an appropriately defined lexicon, the type specification \(\text{rain:v1 + finite + [subj it:n1]}\) could be used to match any node whose lexeme is the finite verb “rain”, and which has an “it” subject. Similarly,

\(^5\)The method \(\text{type(t)}\rightarrow\text{setd(name, prefix, sub)}\) is implemented as an abbreviation for \(\text{type(t)}\rightarrow\text{set("dynamic:name", [prefix, sub])}\).
Table 2.2: Type specifications and their DTAG encodings

<table>
<thead>
<tr>
<th>Type specification</th>
<th>DTAG encoding</th>
<th>Matches</th>
</tr>
</thead>
<tbody>
<tr>
<td>this</td>
<td>this</td>
<td>the node where the type specification is situated</td>
</tr>
<tr>
<td>t</td>
<td>isa(t)</td>
<td>any object whose dynamic type is a subtype of t or equals t</td>
</tr>
<tr>
<td>[a, b]</td>
<td>out(a, b)</td>
<td>any pointed edge h → s where r matches a, and s matches b</td>
</tr>
<tr>
<td>[a, b]</td>
<td>in(a, b)</td>
<td>any pointed edge s → h where r matches a, and h matches b</td>
</tr>
<tr>
<td>< a</td>
<td>before(a)</td>
<td>any node that precedes a node that matches type specification a</td>
</tr>
<tr>
<td>> a</td>
<td>after(a)</td>
<td>any node that succeeds a node that matches type specification a</td>
</tr>
<tr>
<td>prev(a, b)</td>
<td>prev(a, b)</td>
<td>any node within the set of all nodes that match a that immediately precedes a node that matches b (cf. Definition 2.71)</td>
</tr>
<tr>
<td>next(a, b)</td>
<td>next(a, b)</td>
<td>any node within the set of all nodes that match a that immediately succeeds a node that matches b (cf. Definition 2.71)</td>
</tr>
<tr>
<td>extract(a)</td>
<td>extract(a)</td>
<td>any node whose extraction path contains a node or edge matching a (cf. Definition 2.64)</td>
</tr>
<tr>
<td>leftp(a, i, o)</td>
<td>leftp(a, i, o)</td>
<td>any node in the left (i, o)-periphery of any node matching a (cf. Definition 2.73)</td>
</tr>
<tr>
<td>rightp(a, i, o)</td>
<td>rightp(a, i, o)</td>
<td>any node in the right (i, o)-periphery of any node matching a (cf. Definition 2.73)</td>
</tr>
<tr>
<td>edge(a)</td>
<td>edge(a)</td>
<td>matches any edge that matches a</td>
</tr>
<tr>
<td>list(a)</td>
<td>list(a)</td>
<td>matches the unordered list of all objects matching a</td>
</tr>
<tr>
<td>member(a)</td>
<td>member(a)</td>
<td>matches any member in a list matching a</td>
</tr>
</tbody>
</table>

Figure 2.2: Our type specification language: \(t \) denotes an arbitrary type in the lexicon, and \(a \) and \(b \) are arbitrary type specifications.

\[
\text{rain:v1 + finite} - [\subj \text{it:n1}] \text{ matches a node for the finite verb “rain” that lacks an “it” subject. Since type specifications can be used recursively on heads and subordinates, we can specify arbitrarily complex graph structures. For example, cup:n1 + [\pobj \text{of:sp1} + [\nobj \text{tea:n1}]] \text{ can be used to specify the idiom “cup of tea”.
}]

<table>
<thead>
<tr>
<th>Type specification</th>
<th>DTAG encoding</th>
<th>Matches</th>
</tr>
</thead>
<tbody>
<tr>
<td>val(f, a)</td>
<td>val(f, a)</td>
<td>matches the value of the f feature of any node matching a</td>
</tr>
<tr>
<td>etype(a)</td>
<td>etype(a)</td>
<td>matches the edge type of any edge matching a</td>
</tr>
<tr>
<td>dist(a, b)</td>
<td>dist(a, b)</td>
<td>matches the distance in time/position from the unique node matching a to the unique node matching b</td>
</tr>
<tr>
<td>order(a, b)</td>
<td>order(a, b)</td>
<td>matches the position of the unique node matching b within the set of all nodes matching a</td>
</tr>
<tr>
<td>var(v, a)</td>
<td>var(v, a)</td>
<td>matches any object, but with the side effect of declaring a deterministic variable v that refers to the unique node matching type specification a</td>
</tr>
<tr>
<td>nvar(v, a)</td>
<td>nvar(v, a)</td>
<td>matches any object, but with the side effect of declaring a non-deterministic variable v that refers to any node matching type specification a</td>
</tr>
<tr>
<td>var(v)</td>
<td>var(v)</td>
<td>the node that variable v refers to</td>
</tr>
<tr>
<td>-a</td>
<td>-a</td>
<td>any object that does not match a</td>
</tr>
<tr>
<td>(a + b)</td>
<td>a + b</td>
<td>any object that matches both a and b</td>
</tr>
<tr>
<td>(a - b)</td>
<td>a - b</td>
<td>any object that matches a, but not b</td>
</tr>
<tr>
<td>(a</td>
<td>b)</td>
<td>a</td>
</tr>
<tr>
<td>where(v, a)</td>
<td>where(v, a)</td>
<td>any object for which condition a is true if the variable v refers to the object</td>
</tr>
<tr>
<td>a = b, a ≠ b</td>
<td>eq(a, b), ne(a, b)</td>
<td>matches all pairs (o, o') of objects where o matches a, o' matches b, and o ≠ o'</td>
</tr>
<tr>
<td>a < b, a ≤ b</td>
<td>lt(a, b), le(a, b),</td>
<td>matches all pairs (s, s') of strings where s</td>
</tr>
<tr>
<td>a > b, a ≥ b</td>
<td>gt(a, b), ge(a, b)</td>
<td>matches a, s' matches b, and s < s' (and similarly for a ≤ b, a > b, and a ≥ b)</td>
</tr>
</tbody>
</table>

Figure 2.3: Our type specification language (continued): t denotes an arbitrary type in the lexicon, and a and b are arbitrary type specifications.

As in other linguistic theories, we will assume that the edges in dependency graphs are licensed by rules, known as frames, that are encoded in the lexicon: complement and adjunct frames are used to control the deep structure that encodes dependencies, landing frames are used to con-
control the surface structure that controls word order, and filler and gapping frames are used to control secondary dependencies. In the following sections, we will describe these frames formally and define what it means for a node to be well-formed with respect to a particular frame. By means of these frame-specific notions of well-formedness, we can specify what it means for a graph to be globally well-formed:

Definition 2.31. A dependency graph G is called *well-formed* with respect to a lexicon L if:

(a) G is deeply well-formed with respect to L (cf. Definition 2.45);
(b) G is surface well-formed with respect to L (cf. Definition 2.55);
(c) all fillers in G are well-formed with respect to L (cf. Definitions 2.81 and 2.95);
(d) all edges in the graph are licensed by one of (a)–(c).

Remark 2.32. We will assume that the names of the complement, adjunct, landing, and filler frames associated with different nodes in a dependency graph G are encoded in the features associated with the nodes in G, as listed in the table below:

<table>
<thead>
<tr>
<th>name of frame</th>
<th>encoded in</th>
</tr>
</thead>
<tbody>
<tr>
<td>complement frame</td>
<td>cframe feature of governor</td>
</tr>
<tr>
<td>adjunct frame</td>
<td>aframe feature of adjunct (set to undef if no adjunct frame is selected)</td>
</tr>
<tr>
<td>landing frame</td>
<td>lframe feature of landed node</td>
</tr>
<tr>
<td>filler frame</td>
<td>fframe feature of filler</td>
</tr>
</tbody>
</table>

In this section, we have defined dependency lexicons that can deal with inheritance, transformations that can be used to encode morphology and lexical alternations, and dynamic feature functions that can be used to compute feature values dynamically from the graph. We have also defined a type specification language that can be used to specify constraints on the local graph structure around a node. In the following section, we will define our notion of complements and adjuncts, and how they are encoded in the lexicon.

2.3 Deep trees: complements and adjuncts

Summary. We explain how speech signals are segmented into phrases that consist of a
head and its associated complements and adjuncts, and how the principle of compositionality acts as the basis of semantic interpretation by establishing a correspondence between dependency structure and functor-argument structure. We describe how the lexicon licenses complement and adjunct frames, and how dependency edges must form a possibly discontinuous deep tree in order to constitute a well-formed analysis. Finally, we discuss the difference between complements and adjuncts.

Most linguistic theories assume that humans divide speech signals into speech segments that represent lexemes, and that these lexemes are subsequently grouped into larger units, called phrases. In dependency theories, each phrase consists of a phrasal head (or governor) lexeme that determines the syntactic and semantic type of the phrase, and a set of subphrases whose heads are called the dependents of the governor. The phrasal relationship between a governor and a dependent is called a dependency.

Most semantic theories assume that phrases are assigned meanings according to the principle of compositionality, which states that the meaning of a phrase is computed as a function of the meanings of its parts.\(^6\) It is natural to assume that the interpretation functions used to construct the meaning \([G]\) of a phrase \(G\) with governor \(g\) must be specified in the lexical entries of the governor \(g\) and its dependents. In particular, we will make the following assumption.

Assumption 2.33. Let \(M\) denote the set of all possible meanings. The meaning \([G]\) of a phrase \(G\) with governor \(g\) can be computed by dividing the dependents of \(g\) into two ordered subsets, the complements \(c_1, \ldots, c_n\) of \(g\) with complement phrases \(C_1, \ldots, C_n\), and the adjuncts \(a_1, \ldots, a_k\) of \(g\) with adjunct phrases \(A_1, \ldots, A_k\), and setting:

\[
[G] = \mu_1([A_1]) \circ \cdots \circ \mu_k([A_k]) \circ \phi([C_1], \ldots, [C_n])
\]

where \(\phi: M^n \rightarrow M\) (called the functor associated with \(g\)) is provided by the lexical entry of the governor \(g\), and each \(\mu_i: M \rightarrow (M \rightarrow M)\) (called the modifier associated with \(a_i\)) is provided by the lexical entry of the adjunct \(a_i\).

\(^6\)Many compositional theories assume that the interpretation function that computes the meaning of a phrase is conditioned on the context, ie, the context is always passed on as a parameter to the interpretation function. This assumption is necessary in order to explain contextual effects during interpretation, and we will always assume that the contextual parameter is implicitly present. However, in order to simplify the presentation, we will usually avoid stating it explicitly.
Chapter 2. The analysis space: how lexemes license edges in the graph

Remark 2.34. The computation of the meaning of a phrase can be visualized by means of a functor-argument tree, shown schematically in Figure 2.4. Each node in the tree corresponds to the application of a functor or modifier supplied by a governor or an adjunct.

Remark 2.35. As in most other linguistic theories, we assume that a complement is lexically determined by its governor, whereas an adjunct may combine freely with any governor that matches its lexical requirements. This means that a governor can only have a limited number of complements, whereas it may have an unlimited number of adjuncts. Most theories assume that complements can be both optional and obligatory, and that adjuncts are always optional, although some theories operate with obligatory adjuncts. In DG, both optional complements and obligatory adjuncts are permitted.

In our dependency graphs, a complement or adjunct dependency is encoded with a labelled edge $g \xrightarrow{\phi} d$ from the governor to the dependent. Dependency edges are also called deep edges.

Definition 2.36. The subgraph $D(G)$ of a dependency graph G consisting of all deep edges in G is called the deep forest (or deep graph) associated with G. A connected component in the deep forest is called a deep tree (or a dependency tree).
2.3. Deep trees: complements and adjuncts

Definition 2.37. The deep yield of a node \(n \) in a dependency graph \(G \) is the yield of \(n \) in the deep tree for \(G \).

Remark 2.38. A deep tree is shown schematically in Figure 2.4 (left). Deep trees can be viewed as underspecified functor-argument trees, since the deep tree does not encode the functional order in which the modifiers are applied (the modifier scope). Given a modifier scope, the deep tree determines the functor-argument tree uniquely.

Remark 2.39. Edge labels are organized in an inheritance hierarchy where all complement edge labels are subtypes of the type complement, all adjunct edge labels are subtypes of the type adjunct, and the types complement and adjunct are immediate subtypes of the type deep. An example of an edge hierarchy is shown in Figure 2.5.

Remark 2.40. When complements are optional, the functor may lack the argument that should have been provided by a missing complement. In these cases, we will assume that the functor receives the special value null as the argument of the missing complement. The functor can then replace the null argument with a default value.

We will assume that each lexeme provides a set of associated complement and adjunct frames that specify an interpretation function along with syntactic and semantic restrictions on the phrases that produce the arguments to the interpretation function.

Definition 2.41. A lexical type \(t \) must have one or more associated complement frames of the form \((\phi, r_1 : c_1, \ldots, r_n : c_n)\), which licenses \(n \) complement edges of the form \(t \xrightarrow{r_i} c_i \) with complement edge type \(r_i \) where the complement matches the type specification \(c_i \). Relation names must be unique, i.e., \(r_i \neq r_j \) unless \(i = j \). The function \(\phi : M^n \to M \) (called the functor associated
with the complement frame) computes the meaning of the complement frame from the meanings \([C_1], \ldots, [C_n]\) (called the arguments of \(\phi\)) associated with the complement phrases \(C_1, \ldots, C_n\).

Definition 2.42. A lexical type \(t\) must have zero or more associated adjunct frames of the form \((\mu, r : g)\), which licenses an adjunct edge \(g \rightarrow t\) with adjunct edge type \(r\) where the adjunct governor matches the type specification \(g\). The function \(\mu : M \rightarrow (M \rightarrow M)\) (called the modifier associated with the adjunct frame) computes the meaning \(\mu([A])(m)\) of the adjunct frame from the meaning \([A]\) associated with the adjunct phrase \(A\) and the meaning \(m\) associated with the governor after the governor has combined with all its complements and lower-scoped adjuncts.

Pseudocode 2.43. Complement frames are specified with the method:

\[
\text{type}(t) \rightarrow \text{cframe}(C, f, r_1 \rightarrow c_1, \ldots, r_n \rightarrow c_n);
\]

where \(C\) is a unique identifier for the complement frame, \(f\) is the functor, and \(c_i\) is the type specification for the complement with edge type \(r_i\). Similarly, adjunct frames are specified with the method:

\[
\text{type}(t) \rightarrow \text{aframe}(A, m, r \rightarrow g);
\]

where \(A\) is a unique identifier for the adjunct frame, \(m\) is the modifier, \(r\) is the edge type, and \(g\) is the type specification for the adjunct governor.\(^7\)

In both complement frames and adjunct frames, functors are assumed to be specified as Perl code references that compute a semantic representation \&f(r_1 \rightarrow a_1, \ldots, r_n \rightarrow a_n)\) for the combined functor, given the semantic representations \(a_1, \ldots, a_n\) corresponding to all the complement or adjunct governor roles \(r_1, \ldots, r_n\) in the complement or adjunct frame.

Example 2.44. Figure 2.6 shows a small lexicon with supertypes, complement frames, and adjunct frames for the words in the sentence “John saw a little boy with a telescope today”. The immediate supertypes are the two

\(^7\)The cframe and aframe methods are defined as the following abbreviations of the set method: \(\text{type}(t) \rightarrow \text{set}(\text{cframe}:C, \text{cframe}_\text{object}(f, r_1 \rightarrow c_1, \ldots, r_n \rightarrow c_n))\) for the cframe method, and \(\text{type}(t) \rightarrow \text{set}(\text{aframe}:A, \text{aframe}_\text{object}(m, r \rightarrow g))\) for the aframe method. The methods cframe_object and aframe_object return objects representing complement frames and adjunct frames, respectively.
2.3. Deep trees: complements and adjuncts

<table>
<thead>
<tr>
<th>Type</th>
<th>Super types</th>
<th>Complement frame</th>
<th>Adjunct frame</th>
</tr>
</thead>
<tbody>
<tr>
<td>a</td>
<td>PI</td>
<td>nobj : NC</td>
<td></td>
</tr>
<tr>
<td>boy</td>
<td>NC</td>
<td></td>
<td></td>
</tr>
<tr>
<td>John</td>
<td>NP</td>
<td></td>
<td></td>
</tr>
<tr>
<td>little</td>
<td>AN</td>
<td>subj : N, dobj : N</td>
<td>mod : N</td>
</tr>
<tr>
<td>saw</td>
<td>VA</td>
<td>subj : N, dobj : N</td>
<td></td>
</tr>
<tr>
<td>telescope</td>
<td>NC</td>
<td></td>
<td></td>
</tr>
<tr>
<td>today</td>
<td>RG</td>
<td>mod : V</td>
<td>N</td>
</tr>
<tr>
<td>with</td>
<td>SP</td>
<td>nobj : N</td>
<td></td>
</tr>
</tbody>
</table>

Figure 2.6: A small lexicon with supertypes, complements, and adjuncts.

The lexicon specifies that the word “a” is an indefinite pronoun (PI), which takes any common noun (NC) as its nominal object; that the words “boy” and “telescope” are common nouns, and “John” a proper noun (NP); that “little” is a normal adjective (AN) that can modify any noun; that “saw” is a verb (VA) that takes two nouns as its subject and direct object; that “today” is an adverb (RG) that can modify any noun or verb; and that “with” is a preposition (SP) that can take any noun as its nominal object.

A lexicon specifies an analysis space by placing restrictions on what counts as well-formed dependency graphs. This notion of well-formedness differs from the notion of grammaticality: a highly ungrammatical analysis may be well-formed, ie, it may belong to the speaker’s space of all conceivable analyses. One important restriction is that the deep graph associated with a dependency graph must be well-formed, ie, it must satisfy the complement and adjunct restrictions introduced by the lexemes associated with nodes in the graph.

Definition 2.45. An analysis is deeply well-formed if (a) its deep graph consists of a set of trees; (b) each governor in the graph licenses its complements, ie, the lexical entry of the governor contains a unique complement frame that licenses all its complement edges; and (c) each adjunct in the graph licenses its adjunct governor, ie, the lexical entry of the adjunct contains a unique adjunct frame that licenses the adjunct dependency.

Example 2.46. The lexicon in Figure 2.6 allows many analyses of the same sentence. Two well-formed analyses of the sentence “John saw a little boy
with a telescope today” are shown in Figure 2.7 and 2.8. Figure 2.7 is a sensible linguistic analysis, whereas Figure 2.8 is a very poor analysis — in canonical word order, the analysis in Figure 2.8 corresponds to the sentence “A boy today with a telescope saw little John.”

Remark 2.47. The notions of governor, complement, adjunct, functor, argument, modifier, and deep well-formedness, and the principle of compositionality presented here are rather uncontroversial: almost all formal linguistic theories (including GB, HPSG, LFG, TAG, and Word Grammar) agree on these notions, although the theories may differ slightly with respect to the formal implementation.

Deep well-formedness ensures that a dependency graph has a well-formed complement-adjunct structure, but as is obvious from the highly discontinuous graph in Figure 2.8, deep well-formedness does not place any restrictions on word order. In section 2.4, we will therefore extend our lexicon so that it also imposes restrictions on word order. However, before proceeding with word order, we need to clarify the difference between complements and adjuncts within our theory.
The difference between complements and adjuncts

Although most linguistic theories distinguish between complements and adjuncts, it has proven difficult to find precise criteria for deciding whether particular phenomena should be analyzed as complement or adjunct constructions (cf. Vater (1978, 21–45), Helbig (1992, 72–98), Pustejovsky (1995, 63–65), Borsley (1996, 110–13)). This has led some authors (eg, Vater (1978, 39) and Somers (1987, 24–28)) to suggest that the complement-adjunct distinction is not a dichotomy, but a continuum of dependents with varying degrees of affinity to the governor, ranging from subjects on one end of the scale to negations like “not” on the other.

In the complement-adjunct debate, most linguists have implicitly assumed that the complement-adjunct distinction is made at the language level. However, we believe that much of the theoretical confusion about complements and adjuncts disappears if the distinction is made at the level of analyses or speakers instead (cf. Kromann 1999b, 27–30):

- **language level distinction**: all speakers arrive at the same complement or adjunct analysis of a particular example.
- **speaker level distinction**: a speaker’s grammar only allows either a complement analysis or an adjunct analysis of a particular example, but different speakers may have different analyses.
- **analysis level distinction**: each analysis considered by a speaker encodes the particular choices of complement and adjunct mechanisms in that analysis, but the speaker’s grammar may allow both a complement and an adjunct analysis of a particular example.

In our view, language learning can be viewed as a mostly unconscious process where a child gradually constructs a compact mental model of the languages spoken by the groups of speakers with which the child interacts. The child will try to revise its model whenever it realizes that the model leads to misunderstandings or significant stylistic differences that might affect the child’s social standing within a particular group of speakers. The random nature of this process means that speakers end up having slightly different grammars that change over time, and that speakers may conceivably have to maintain grammars that allow many competing analyses simultaneously — eg, during their transition from one model of what is grammatical to another, or because they must encode several slightly different sublanguages. If it is true that grammars are ambiguous and may
Chapter 2. The analysis space: how lexemes license edges in the graph

differ between speakers, this suggests that the complement-adjunct distinction is best made at the analysis level.

A binary distinction between complements and adjuncts at the analysis level is perfectly compatible with a continuous scale at the language level that measures the proportion of speakers that choose to use a complement mechanism rather than an adjunct mechanism to analyze a given construction in a particular situation. There may be constructions where almost all speakers agree on one of the analyses (e.g., all speakers may agree that subjects are complements, and temporal adverbials are adjuncts), but there may also be constructions where speakers are more or less evenly divided between the complement and adjunct analyses. Our conjecture is that many of the contentious examples in the complement-adjunct debate are of this kind.

This raises the question of why there are phenomena where speakers tend to agree, and other phenomena where the variation among speakers is large. Our explanation is that in principle, a speaker has a free choice between the complement and adjunct mechanisms when encoding a construction. But the free choice is tempered by the need for an encoding that is as compact as possible, to avoid wasting human brain capacity. As an extreme example, in a sufficiently sophisticated grammar formalism, any grammar can be encoded as a functionally equivalent grammar that only uses the complement mechanism, or only uses the adjunct mechanism, but the resulting grammars will be bad because they are unnecessarily large.⁸

Given a construction in a grammar G, we can measure the efficiency of a complement encoding over an adjunct encoding by comparing the size of two grammars G_c and G_a that encode the construction by a complement and adjunct mechanism, respectively, while being as small as possible among all grammars that are functionally equivalent to G. If G_c is significantly smaller than G_a, then all speakers are likely to select a complement encoding, and vice versa. But if G_c and G_a have almost equal size, then both encodings are equally good, and the speakers will make a random choice between them.

⁸In a grammar using complements only, all verbs must specify a large number of complement frames that encode all possible combinations of subjects, objects, and adverbials. In a grammar using adjuncts only, all subjects and objects must encode the valency frames of all verbs, so that they only modify verbs where they can appear as dependents. Obviously, these encodings are very inefficient.
Our theoretical account does not solve the practical problem of measuring the efficiency gain we get by using one mechanism rather than the other. It therefore remains an art to determine the most efficient encoding, and the many heuristic tests proposed in the complement-adjunct literature can be viewed as good practical guides. However, our theory provides conceptual clarity by explaining the linguistic intuition that some constructions are clearly complements, some are clearly adjuncts, and some are difficult borderline cases. It also tells us that in borderline cases, we have a free choice between the complement and adjunct mechanisms, thereby resolving a central question in the complement-adjunct debate.

In this section, we have defined complements and adjuncts, how they relate to functor-argument structure, and how they are encoded in the lexicon. We have also clarified the theoretical difference between complements and adjuncts. In the following section, we will show how word order can be controlled by means of a surface tree.

2.4 **Surface trees: landing sites and word order**

Summary. We show how word order can be controlled by means of a continuous surface tree. The edges in the surface tree encode the relationship between a node and its landing site whose lexical entry must license the landed node. The surface tree is linked to the deep tree by a deep upwards movement principle that ensures that a node’s landing site dominates the node’s governor in the deep tree. We show how the global word order can be determined by the continuity of the surface tree and weighted local word order constraints. Finally, we show how to construct surface trees with a minimal amount of upwards movement.

In the previous section, we saw how deep trees are used to encode the dependency relations that determine a unique functor-argument structure given a modifier scope, and hence a unique semantic interpretation. We also saw in Example 2.46 that complement and adjunct frames in themselves are insufficient to control word order. In this section, we will therefore introduce the machinery needed to control word order.

In a dependency theory, it is natural to assume that the word order in a dependency graph must be controlled by lexical rules associated with the nodes in the graph. The simplest idea is to let the word order be controlled by the deep tree, ie, to let each governor be responsible for the relative word order of its complements and adjuncts. Unfortunately, this simple idea is too crude. The reason is that the global word order is not uniquely
Chapter 2. The analysis space: how lexemes license edges in the graph

Figure 2.9: A discontinuous deep tree (top) and an associated continuous surface tree (bottom). The discontinuous dependency and its associated xland edge is shown with dotted lines.

specified by a local ordering of the dependents of all governors because the potential discontinuity of the deep tree allows phrases to be intermingled. Without the discontinuity, the idea would work fine.

The obvious solution is to introduce a continuous surface tree where all discontinuous edges from the deep tree are replaced with continuous edges, ie, the continuous surface tree can be viewed as a tree that is obtained from the deep tree by moving discontinuous dependents upwards until all discontinuous edges have been eliminated. The node \(l \) where a discontinuous dependent \(n \) lands is called the landing site of the dependent, and \(n \) is called the landed node of \(l \). The landing site \(l \) coincides with the governor \(g \) of \(n \) when there is no movement. The relationship between \(l \) and \(n \) is encoded with an edge \(l \overset{r}{\longrightarrow} n \), where the edge type \(r \) is a subtype of the type surface, thereby indicating that the edge is a surface edge.

Definition 2.48. The subgraph \(S(G) \) of a dependency graph \(G \) consisting of all surface edges in \(G \) is called the surface forest (or surface graph) associated with \(G \). A connected component in the surface forest is called a surface tree.

Example 2.49. Figure 2.9 shows a dependency analysis of the phrase “a hard plan to implement”, consisting of a discontinuous deep tree (top) and an associated continuous surface tree (bottom). The surface tree is the result of moving up the dependent “to” from its governor “hard” to its landing site “a”. The discontinuous edge and its replacement is shown with dotted arcs. The label land is used for surface edges where the governor and the landing site coincide, whereas the label xland (external landed node) is used for surface edges where they do not coincide, ie, where the node has been moved upwards.
We will assume that landed nodes must be lexically licensed by their landing sites, by means of a landing frame associated with each lexeme.

Definition 2.50. A lexical type t must have an associated landing frame of the form $(r_1 : n_1, \ldots, r_k : n_k)$, which licenses an arbitrary number of landing edges of the form $t \xrightarrow{r_i} n_i$ with landing edge type r_i where the landed node matches the type specification n_i.

Pseudocode 2.51. Landing frames are added to lexemes with the method:

```
type(t)->lframe(r_1=>n_1, \ldots, r_k=>n_k);
```

where n_i is the type specification for landed nodes with edge type r_i. If n_i equals null, then the landing edge rule for edge type r_i is removed from the landing frame.9

Example 2.52. Suppose we want to encode in our DTAG lexicon that words can act as landing sites for all their dependents by default, that finite verbs also allow non-dependents to land if the non-dependents are either nouns or verbs, and that infinite verbs allow all dependents except subjects to land. This can be encoded as follows (the type specification \downarrowdeep this$]$ is satisfied by a node if it is a dependent of the node whose lexical entry contains the type specification):

<table>
<thead>
<tr>
<th>Type</th>
<th>Super</th>
<th>Landing frame</th>
</tr>
</thead>
<tbody>
<tr>
<td>Word</td>
<td>Word</td>
<td>$\xrightarrow{\text{land}} : [\downarrow$deep this$]$</td>
</tr>
<tr>
<td>V:fin</td>
<td>V</td>
<td>$\xrightarrow{x\text{land}} : (N</td>
</tr>
<tr>
<td>V:inf</td>
<td>V</td>
<td>$\xrightarrow{\text{land}} : [\downarrow$deep-subj this$]$</td>
</tr>
</tbody>
</table>

The inheritance means that V:fin inherits the default land rule from Word, whereas V:inf overrides the default by disallowing subjects to land while allowing all other dependents to land.

Example 2.53. Figure 2.10 shows an inheritance lexicon that licenses the analysis in Figure 2.9 of the phrase “a hard plan to implement.” In the lexicon, we have assumed that adjectives only modify nouns that are not governed by a pronoun (P), i.e., that adjectives attach to the determiner if there is one, and the noun otherwise.10

9The lframe method is defined as a short-hand for the following sequence of set statements:
Chapter 2. The analysis space: how lexemes license edges in the graph

<table>
<thead>
<tr>
<th>Type</th>
<th>Super</th>
<th>C-frame</th>
<th>A-frame</th>
<th>L-frame</th>
</tr>
</thead>
<tbody>
<tr>
<td>Word</td>
<td></td>
<td></td>
<td>mod : N – [[nobj P]]</td>
<td></td>
</tr>
<tr>
<td>A</td>
<td>Word</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>N</td>
<td>Word</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>SP</td>
<td>Word</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>V</td>
<td>Word</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>NC</td>
<td>N</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>P</td>
<td>N</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>a</td>
<td>P</td>
<td></td>
<td>nobj : NC</td>
<td></td>
</tr>
<tr>
<td>hard</td>
<td>A</td>
<td></td>
<td>pobj : to</td>
<td></td>
</tr>
<tr>
<td>plan</td>
<td>NC</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>to</td>
<td>SP</td>
<td></td>
<td>vobj : V</td>
<td></td>
</tr>
<tr>
<td>implement</td>
<td>V</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Figure 2.10: An inheritance lexicon for the words in Figure 2.9 with super-types and complement, adjunct, and landing frames.

We have informally described surface trees as being obtained from deep

type(t) → set("lfframe/r1", n1) → ... → set("lfframe/rk", nk).

The main argument for the analysis of adjectives as modifiers of the determiner is that adjectives are marked for the form of the determiner in both Danish and German, whereas common nouns are unmarked. Analyzing the adjective as a modifier of the common noun would therefore result in non-local agreement. In Danish, the adjective receives a definite marking whenever the determiner is definite, and an indefinite marking whenever the determiner is indefinite:

(1) (et godt) / (det gode) eksempel
 (a good-INDEF) / (the good-DEF) example

Similarly, in German, there are three determiner classes that affect the gender-case-number marking of all modifying adjectives, without affecting the gender-case-number marking of the common noun: the weak inflection is used with determiners in the “der” group, the mixed inflection is used with determiners in the “ein” group, and the strong inflection is used when the determiner is uninflected or absent.

(2) (das gute) / (ein gutes) / (Schmidts gutes) Beispiel
 (the good-WEAK) / (a good-MIXED) / (Schmidt’s good-STRONG) example

Moreover, adjectives can modify determiners in the absence of common nouns in Danish, German, and to a lesser degree English: e.g., “Give me your tired, your poor”. Hudson (2003) assumes that the adjective depends on both determiner and common noun, a multiple dependency that is not possible within our formal framework. However, apart from this difference, our analysis of NPs is essentially identical to Hudson’s.
trees by lifting discontinuous dependents to higher nodes in the deep tree. We can formalize this connection between deep trees and surface trees in terms of the deep upwards movement principle defined below. This principle holds in most other syntax formalisms as well, including GB, HPSG, LFG, TAG, and Word Grammar, although the details of the implementation may be slightly different.

Definition 2.54. A dependency graph satisfies the deep upwards movement principle if the landing site of each node in the graph dominates the node’s governor within the deep tree.

We can now define the notion of a well-formed surface graph.

Definition 2.55. A dependency graph is surface well-formed if (a) its surface graph consists of a set of continuous trees; (b) each landing site in the graph licenses its landed nodes, i.e., each landing edge matches some entry in the landing frame (or filler frame, cf. Definition 2.80) associated with the landing site; and (c) the dependency graph satisfies the deep upwards movement principle.

Example 2.56. Figure 2.11 shows three surface trees for the phrase “a hard plan to implement.” The first surface tree (left) is ill-formed because it is discontinuous. The second surface tree (middle) is ill-formed because it violates the deep upwards movement principle: for the word “to”, the landing site “plan” does not dominate the governor “hard” in the deep tree. The third surface tree (right) is well-formed.

The surface tree must be coupled with constraints that restrict the local ordering of the landed nodes at each landing site in order to ensure a correct global word order.
Chapter 2. The analysis space: how lexemes license edges in the graph

Figure 2.12: Three examples of well-formed dependency graphs for phrases that are ungrammatical because of incorrect local word order (left and middle) or incomplete landing rules (right).

Example 2.57. Figure 2.12 shows three surface trees that are well-formed according to the lexicon in Figure 2.10, although they sound ungrammatical or unnatural. This shows that the lexicon in Figure 2.10 is still incomplete. What we need are rules that restrict the local ordering of the landed nodes at each landing site. These rules could be implemented as landing frame rules, but since speakers can make small, unpredictable errors with respect to local word order, it is more convenient to implement word order constraints as violable weighted constraints, i.e., constraints that affect the ill-formedness measure without reducing the size of the analysis space. Violable weighted constraints are the topic of chapter 3, where we will show how they can be used to deal with word order, agreement, etc., so here we will only give a preview of ideas to come.

The intuition behind violable weighted constraints is that each node in the dependency graph has an associated set of weighted constraints that are specified in the node’s lexeme and evaluated at the node, triggering a fixed cost for each violation. These localized costs encode the precise type, location, and severity of grammatical violations in the graph. Weighted constraints are given in the form \(c \ast s \) where \(c \) is a non-negative real-valued cost, and \(s \) is a type specification that matches nodes with violating configurations. The total cost returned by a weighted constraint \(c \ast s \) is \(cn \) where \(n \) is the number of different subgraphs that match the type specification \(s \).

The ungrammaticality of the analyses in Figure 2.12 can be explained if we assume that a speaker of English has a grammar with the weighted constraints (a)–(f) below. For simplicity, we will assume that the cost 100 indicates a completely ungrammatical configuration, and that the cost 50 indicates an unnatural configuration (in DG, a speaker’s space of analyses...
2.4. Surface trees: landing sites and word order

<table>
<thead>
<tr>
<th></th>
<th>2.11 right</th>
<th>2.12 left</th>
<th>2.12 middle</th>
<th>2.12 right</th>
</tr>
</thead>
<tbody>
<tr>
<td>(a)</td>
<td>0</td>
<td>100</td>
<td>100</td>
<td>0</td>
</tr>
<tr>
<td>(b)</td>
<td>0</td>
<td>0</td>
<td>100</td>
<td>0</td>
</tr>
<tr>
<td>(c)</td>
<td>0</td>
<td>100</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>(d)</td>
<td>0</td>
<td>0</td>
<td>100</td>
<td>0</td>
</tr>
<tr>
<td>(e)</td>
<td>0</td>
<td>0</td>
<td>100</td>
<td>0</td>
</tr>
<tr>
<td>(f)</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>50</td>
</tr>
<tr>
<td>Total</td>
<td>0</td>
<td>200</td>
<td>400</td>
<td>50</td>
</tr>
</tbody>
</table>

Figure 2.13: The violation costs for the analyses in Figure 2.11 and 2.12 computed from the weighted constraints (a)–(f) in Example 2.57.

may include highly ungrammatical analyses. In chapter 6, we will then return to the issue of how word order costs can be assigned by means of a probabilistic language model rather than hand-written cost functions.

- **(a) P**: 100 * ([\text{surface this}] + [< this]): pronouns with preceding landed nodes are ungrammatical.
- **(b) P**: 100 * ([\text{surface this}] + A + [> [\text{nobj} this] + [\text{surface this}]])): pronouns with landed adjectives that succeed landed nominal objects are ungrammatical.
- **(c) P**: 100 * ([\text{surface this}] + SP + [< [\text{surface this}] + (N|AN)])): pronouns with landed prepositions that precede landed nouns or adjectives are ungrammatical.
- **(d) SP**: 100 * ([\text{surface this}] + [< this]): prepositions with preceding landed nodes are ungrammatical.
- **(e) A**: 100 * ([\text{surface this}] + SP + [< this]): adjectives with preceding landed prepositions are ungrammatical.
- **(f) A**: 50 * ([\text{surface this} + [\text{mod N}] + [> this]]): adjectives with a succeeding landed node are unnatural if they modify a noun.

These rules are only an approximation to English word order rules, since there are constructions where these rules are too restrictive (eg, “How good an idea is it?”). Figure 2.13 shows the violation costs associated with each analysis; from the total cost, we see that the phrase “a hard plan to implement” (cost 0) is more well-formed than the phrase “a hard to implement plan” (cost 50), which is in turn significantly more well-formed than the phrases “hard a to implement plan” (cost 200) and “plan a implement to hard” (cost 400).
Chapter 2. The analysis space: how lexemes license edges in the graph

We can always construct a continuous surface tree by letting all nodes land on the root node of the deep tree. However, this surface tree is unnecessarily flat, and therefore results in unnecessarily complex local word order rules. From a linguistic point of view, we usually get the simplest local word order rules by using a continuous surface tree with as little lifting as possible. This idea is formalized below.

Definition 2.58. Let T be a deep tree. The minimal continuous lifting T_{mcl} of T is defined as the surface tree obtained from T by replacing each edge $g \rightarrow d$ in T with the edge $l \rightarrow d$ where l is the lowest transitive governor of d such that $Y_T(l)$ contains each node b that lies between l and d in the linear word order, where s is set to land if $g = l$ and xland if $g \neq l$.

Example 2.59. The surface trees in Figure 2.11 (right) and Figure 2.12 are minimal continuous liftings of the corresponding deep trees. A more complex example of a minimal continuous lifting is shown in Figure 2.14.

Remark 2.60. When drawing DG analyses, we will often omit most or all of the surface edges. When a surface edge is omitted, we will assume that it is identical to the surface edge given by a minimal continuous lifting.

We will now prove that the minimal continuous lifting is what its name suggests: a continuous tree with a minimal amount of lifting.

Proposition 2.61. The minimal continuous lifting T_{mcl} associated with a deep tree T is a continuous tree with a minimal amount of lifting among all continuous liftings of T.

Proof. To prove that T_{mcl} is a tree, we must prove that T_{mcl} is acyclic and connected. The acyclicity follows by observing that a cyclic path in the
surface tree T_{mcl} translates into a cyclic path in the deep tree T if we replace each edge $l \rightarrow d$ in the cycle in T_{mcl} with the unique downwards path in T from the landing site l to the landed node d. The connectedness follows by observing that a node’s landing site must be chosen among the node’s transitive governors so that all nodes in T_{mcl} are surface dominated by the root node of T.

We prove the continuity of T_{mcl} by contradiction. Assume $l \rightarrow d$ is a discontinuous edge in T_{mcl}. By definition of discontinuity, there exists a node d' between l and d such that $d' \notin Y_{T_{\text{mcl}}}(l)$. Lemma 2.62 shows that if there is one node between l and d that is not in $Y_{T_{\text{mcl}}}(l)$, then all its transitive landing sites also lie between l and d and are not in $Y_{T_{\text{mcl}}}(l)$, i.e., there are infinitely many nodes between l and d. This contradicts that deep trees are finite, thereby proving that T_{mcl} is continuous.

That T_{mcl} has the smallest amount of lifting among all continuous trees that have been constructed by lifting edges within the deep tree is obvious from the definition of discontinuity and T_{mcl}.

Lemma 2.62. Suppose d is a node in T_{mcl} with landing site l. If d' lies between l and d, and $d' \notin Y_{T_{\text{mcl}}}(l)$, then the landing site l' of d' also lies between l and d, and also satisfies $l' \notin Y_{T_{\text{mcl}}}(l)$.

Proof. We will assume without loss of generality that $l < d$. Suppose d' satisfies $l < d' < d$ and $d' \notin Y_{T_{\text{mcl}}}(l)$. There are five cases to consider:

(a) If $l' < l$, then $l' < l < d'$ so that $l \in Y_{T}(l')$ by definition of l'. Since $l < d' < d$ and $Y_{T}(l)$ contains all nodes between l and d, we see that $Y_{T}(l)$ also contains all nodes between l and d', i.e., l is a potential landing site for d'. Since l' is the minimal potential landing site, we have $l' \in Y_{T}(l)$, which combined with $l \in Y_{T}(l')$ gives $l = l'$, a contradiction. (b) If $l' = l$, then $d' \in Y_{T_{\text{mcl}}}(l') = Y_{T_{\text{mcl}}}(l)$, a contradiction. (c) If $l < l' < d$, then the lemma holds since l' lies between l and d, and $d' \notin Y_{T_{\text{mcl}}}(l)$ implies $l' \notin Y_{T_{\text{mcl}}}(l)$. (d) If $l' = d$, we have $Y_{T_{\text{mcl}}}(l') = Y_{T_{\text{mcl}}}(d)$ which is a subset of $Y_{T_{\text{mcl}}}(l)$, so $d' \notin Y_{T_{\text{mcl}}}(l)$ implies $d' \notin Y_{T_{\text{mcl}}}(l')$, a contradiction. (e) If $d < l'$, then $d' < d < l'$ so that $d \in Y_{T_{\text{mcl}}}(l')$ by definition of l', i.e., l' is a transitive governor of d. Since l and not l' is the minimal landing site of d, there exists b with $d < b < l'$ and hence $d' < b < l'$ such that $b \notin Y_{T}(l')$, which contradicts the definition of l'. The proof shows that (c) is the only case that does not lead to contradiction, and hence that the lemma always holds.

We will now define a number of concepts that we need in later sections.
We start by defining the notion of extraction path used in Figure 2.2.

Definition 2.63. Let n be a node with governor g and landing site l. Then the upwards path in the deep graph from g to l (or the zero path starting and ending at g if $g = l$) is called the **extraction path** of n.

Definition 2.64. Let G be a graph. The type specification $\text{extract}(a)$ matches any node in G whose extraction path contains a node or edge that matches the type specification a.

Example 2.65. In Figure 2.14, the node n_1 has extraction path $n_3 \xleftarrow{r_3} n_4 \xleftarrow{r_4} n_6$, the node n_5 has extraction path $n_1 \xleftarrow{r_1} n_3 \xleftarrow{r_5} n_4$, and the nodes n_2, n_3, n_4, and n_6 have an empty extraction path.

We will now define the notions of surface yield, linear adjacency, and graph adjacency.

Definition 2.66. The **surface yield** of a node n in a graph G is the yield of n in the surface graph of G.

Definition 2.67. Two nodes n, n' in a graph G are called **linearly adjacent** if they are adjacent in the linear order of G, i.e., if n immediately precedes n', or n' immediately precedes n.

Definition 2.68. The **linear distance** (or distance) between two nodes n and n' is defined as the number of nodes between n and n'.

Definition 2.69. Two nodes n, n' in a graph G are called **yield-adjacent** if the surface yields of n and n' are disjoint, but adjacent to each other, i.e., neither node dominates the other within the surface graph, and it is possible to find a node n_1 in the surface yield of n that is adjacent to a node n'_1 in the surface yield of n'.

We will now define the notion of immediate precedence and succession, and previous and next node, used in Figure 2.2.

Definition 2.70. Let G be a graph, let n be a node in G, and let S be a set of nodes in G. Then a node $n' \in S$ is said to **immediately precede** n within S provided $n' < n$ and there is no other node $n'' \in S$ such that $n' < n'' < n$. Similarly, n' is said to **immediately succeed** n within S provided $n < n'$ and there is no other node $n'' \in S$ such that $n < n'' < n'$.
2.4. Surface trees: landing sites and word order

Figure 2.15: A DG analysis of an example with punctuation.

Definition 2.71. Let \(G \) be a graph, let \(n \) be a node, and let \(a \) and \(b \) be type specifications. Then the type specification \(\text{prev}(a, b) \) evaluated at \(n \) matches any node \(n' \) that immediately precedes any node matching \(b \), within the set of all nodes that match \(a \). Similarly, the type specification \(\text{next}(a, b) \) evaluated at \(n \) matches any node \(n' \) that immediately succeeds any node matching \(b \), within the set of all nodes that match \(a \).

When encoding punctuation rules, it is convenient to have a notion of left and right periphery.

Definition 2.72. Let \(G \) be a graph, and let \(n \) be a node in \(G \). The left boundary of \(n \) is the left-most node in the surface yield of \(n \). Similarly, the right boundary of \(n \) is the right-most node in the surface yield of \(n \).

Definition 2.73. Let \(G \) be a graph containing a node \(n \). The left \((i, o)\)-periphery of \(n \) is the largest adjacent set \(L \) of nodes in \(G \) such that (a) a node in \(L \) within the surface yield of \(n \) must match the type specification \(i \); (b) a node in \(L \) outside the surface yield of \(n \) must match the type specification \(o \); (c) if \(L \) is non-empty, then \(L \) must contain either the left boundary of \(n \) or the node immediately to the left of the left boundary; and (d) \(n \) is not a member of \(L \). The right \((i, o)\)-periphery is defined similarly, with “right” replacing “left”.

Example 2.74. To illustrate the definition of left and right periphery, we calculate the left and right \((s, s)\)-periphery for some of the words in Figure 2.15, where \(s \) is the type specification \([\text{punct} \leftarrow \text{any}]\). The results are shown in Figure 2.16. The main motivation for introducing the notions of left and right periphery is to deal with punctuation. In general, controlling punctuation is a challenge in any linguistic theory. For example, in sentence (3), a comma must obligatorily attach itself as an adjunct of “yelled”:

(3) After she yelled “Police!” he said “Take it!”
Chapter 2. The analysis space: how lexemes license edges in the graph

<table>
<thead>
<tr>
<th>word</th>
<th>left ((s, s))-periphery</th>
<th>right ((s, s))-periphery</th>
</tr>
</thead>
<tbody>
<tr>
<td>1: "</td>
<td>1: "</td>
<td>4–5: "</td>
</tr>
<tr>
<td>2: Take</td>
<td>4–5: "</td>
<td>5: ,</td>
</tr>
<tr>
<td>3: it</td>
<td>4: "</td>
<td>13–14: "</td>
</tr>
<tr>
<td>4: "</td>
<td>5: ,</td>
<td>13–14: "</td>
</tr>
<tr>
<td>5: ,</td>
<td>4: "</td>
<td></td>
</tr>
<tr>
<td>7: said</td>
<td>1: "</td>
<td></td>
</tr>
<tr>
<td>10: yelled</td>
<td>13–14: "</td>
<td></td>
</tr>
</tbody>
</table>

Figure 2.16: The left and right \((s, s)\)-periphery for some of the nodes in Figure 2.15.

But in Figure 2.15, the comma is obligatorily absent because of the sentence-final period, ie, our punctuation rules must have the effect that a finite verb has exactly one unary punctuation mark in its right periphery. We will return to the treatment of punctuation within DG in section 4.6.

Comparison with other approaches to word order

Most linguistic theories essentially agree on the notion of dependency structure described in section 2.3, but differ with respect to how they control word order. We originally constructed the word order theory in section 2.4, where surface trees are constructed by moving nodes upwards to a landing site, as a discontinuous dependency-based hybrid between the extraction theory in HPSG and GB’s notion of movement, S-structure, and D-structure (cf. Chomsky 1965; Haegeman 1994/1991; Freidin 1991). However, we have departed from GB in that we construct the surface tree by moving edges while keeping nodes fixed, whereas GB changes node labelings while keeping edges fixed. We have departed from HPSG by using a surface tree based on dependency structure rather than phrase structure (ie, the surface tree does not contain any phrasal nodes).

The distinction between deep trees and surface trees is shared by most linguistic theories, in some form, and surface trees and deep trees are usually designed so that the upwards movement principle holds. For example, although theories like HPSG and LFG have distanced themselves from the Chomskyan notion of movement, LFG (Dalrymple et al. 1994; Bresnan 2001) makes an explicit distinction between a phrase-structure based c-structure (which roughly corresponds to a surface tree) and an acyclic f-
structure (which roughly corresponds to a deep tree), whereas HPSG (Pol-
lard and Sag 1994; Bouma et al. 2001; Müller 2004) embodies an implicit
distinction between phrase structure trees (surface trees) and the depen-
dency trees encoded in the the valency features (deep trees). Similarly,
deep trees and surface trees have natural equivalents in Tree-Adjoining
Grammar (Abeillé and Rambow 2000) and Categorial Grammar (Steedman
2000).

The dependency-based word order theory we have presented seems
to have been developed independently within three different dependency
frameworks, using essentially identical surface trees, but slightly different
word order rules: first by Hudson (1998, 2003), then by Kromann (1999a,b,
2001), and finally by Duchier and Debusmann (2001) and Duchier (2001).
The most important differences are described below.

Remark 2.75. The word order theory sketched in Hudson (1998) resembles
our word order theory by being dependency-based and positing a contin-
uous surface tree. The main differences between the two theories is that
Hudson uses a different set of local word order rules and assumes that
the path between the landed node and its landing site is encoded with an
‘extractee’ edge from each node on the path to the landing site. In 2003,
his word order theory was changed so that a landed node may have more
than one landing site (called a *landmark* in his new theory), which does not
necessarily have to be a transitive governor of the landed node.

Remark 2.76. The word order theory presented in Duchier and Debus-
mann (2001) and Duchier (2001) is almost identical to the theory we have
presented in Kromann (1999a,b, 2001). The most important difference be-
tween the two theories is that the word order theory by Duchier and De-
busmann is based on topological field theory (cf. Bech 1955/1983; Gerdes
and Kahane 2001; Harbusch and Kempen 2002) and only involves invio-
lable constraints, rather than the violable weighted constraints used in our
theory. It is possible to encode a grammar based on topological field the-
ory within our framework, by assigning a unique surface edge label to each
field. The fixed linear order of the fields can then be encoded by means of
cost functions that assign a cost whenever two surface edges violate the
relative order of the fields.

It is also interesting to compare our word order theory with the notion
of domain unions proposed by Reape (1994).
Remark 2.77. In our theory, whenever we have a discontinuous dependent, we construct a continuous surface tree by moving up the discontinuous dependent within the deep tree. Reape (1994) has proposed a slightly different strategy based on domain unions, which has also been adopted within a dependency framework by Gerdes and Kahane (2001). In Reape’s proposal, we move up the discontinuous dependent by flattening the local tree containing the dependent — i.e., we move up the dependent and its siblings so that they become siblings of the governor, and repeat this flattening procedure until the node reaches its final landing site. Reape’s approach involves moving a larger number of nodes than in our theory, which results in significantly flatter surface trees and correspondingly more complex word order rules. Figure 2.17 shows our surface tree for the sentence “Talking, he has always been fond of” (which coincides with the minimal continuous lifting) and the corresponding domain union surface tree.

In our theory, we have assumed that movement takes place within the deep tree, but there are also theories where movement takes place within the surface tree.

Remark 2.78. In deep movement, a word’s landing site must dominate the word’s governor in the deep tree, whereas in surface movement, the landing site must dominate the governor in the surface tree. Surface movement is more restrictive than deep movement, since the surface tree can be seen as a flattened version of the deep tree. Our movement theory is based on deep movement, whereas slash-propagation in classical HPSG and movement in GB correspond to surface movement. Interestingly, Bouma, Mal-
ouf, and Sag (Bouma et al. 2001, §3.1) have recently proposed changing slash-propagation within HPSG so that it corresponds to deep movement.

In this section, we have shown how word order can be controlled by means of a continuous surface tree where the landing sites are responsible for ordering their landed nodes, and we have formulated a deep upwards movement principle that relates the surface tree with the deep tree. In the next section, we will show how to encode secondary dependencies, ie, dependencies where a lexeme satisfies more than one dependency.

2.5 Fillers and gapping: secondary dependencies

Summary. We introduce phonetically empty fillers to explain how lexemes can fill more than one dependent role in constructions such as verbal complexes, relatives, control constructions, and gapping coordinations. Fillers are lexically licensed by a filler licensor, a special landing site that identifies a filler source in the dependency graph from which the syntactic and semantic properties of the filler can be computed. The fillers can also be used to encode gapping conjuncts where some of the dependencies in the filler source tree have been replaced by material from the gapping conjunct.

In section 2.3, we saw that lexemes are equipped with complement and adjunct frames that license the dependency relations among the lexemes in a dependency graph, and that a lexeme cannot have more than one governor in a well-formed deep tree. In this section, we will show how to uphold this assumption while providing analyses for constructions such as verbal complexes, relatives, and control constructions, where a lexeme with a primary governor seems to satisfy a complement or adjunct role of one or more secondary governors.

For example, in the verbal complex (4) below, the word “truth” seems to satisfy the subject roles of both “will” and “prevail”. Similarly, in the control construction (5), “the opera” seems to satisfy both the direct object role of “want” and the subject role of “stop”. Finally, in the relative construction (6), “the painting” seems to satisfy both the subject role of “was” and the direct object role of “bought”.

\[(4)\] Truth will always prevail. (verbal complex)
\[(5)\] We want the opera to stop right now. (control)
\[(6)\] The painting we bought was a fake. (relative)
A lexeme can even satisfy a dependent role in arbitrarily many governors, as shown by (7), where “they” satisfies the subject role of all verbs in the sentence: “should”, “have”, “been”, “permitted” (analyzed as a passive form), “seek”, and “agree”.

(7) They should have been permitted to seek to agree on a compromise.

A simple idea for dealing with these examples would be to assume that lexemes can have arbitrarily many governors; but if we did that, “John likes” could be interpreted to mean “John likes John”, where “John” acts as the simultaneous subject and object of “likes”, and this is not what we want. As in other syntactic frameworks, the key to explaining secondary dependencies is to note that a secondary dependency is not licensed by some particular property of the dependent or its secondary governor, but is lexically licensed by a third lexeme, called the filler licensor, that acts as an intermediary between the secondary dependent and its secondary governor. For example, it is a property of a modal verb like “will” that it passes on its subject to its verbal complement; it is a property of a control verb like “want” that it passes on its direct object as the subject of the infinitival verb within its “to” complement; and it is a property of any verb that attaches itself as a relative modifier to a noun that it passes on the relativized noun as a secondary dependent somewhere within the relative clause.

In our framework, we will assume that a filler licensor acts as a special landing site that establishes a secondary dependency by creating a phonetically empty placeholder (called a filler) for another node (called the filler source). The governor of the filler is sometimes called a secondary governor of the filler source, and the filler source is called its secondary dependent. The relationship between the filler, filler licensor, and filler source is encoded by means of two edges: a surface edge with edge type r_l from the filler licensor to the filler, and a source edge with edge type r_s from the filler source to the filler, as shown schematically in Figure 2.18. The edge type r_l must be a subtype of the type fill, and r_s must be a subtype of the type source (cf. Figure 2.19). Fillers must be lexically licensed by a filler frame associated with the filler licensor, as defined below.

Definition 2.79. A filler triple is a triple $f = (f_{type}, f_{fill}, f_{src})$ where f_{type} is the filler lexeme assigned to the filler node, f_{fill} is the fill type assigned to the edge from the filler licensor to the filler, and f_{src} is the source type assigned to the edge from the filler to the filler source.
2.5. Fillers and gapping: secondary dependencies

Figure 2.18: The schematic dependency encoding of the relationship between a filler, filler licensor, and filler source in a dependency graph.

Definition 2.80. A lexical type \(t \) can have zero or more associated filler frames of the form \((s, f)\) where \(s \) is a type specification that identifies all potential nodes in the dependency graph that can function as filler source for the filler, and \(f \) is a filler triple.

Definition 2.81. A filler node \(n_f \) in a dependency graph \(G \) is called filler well-formed if (a) it has exactly one incoming filler edge and one incoming source edge, namely \(n_l \overset{r_l}{\to} n_f \) and \(n_s \overset{r_s}{\to} n_f \), respectively; (b) there is no other filler in \(G \) with the same filler licensor, filler source, and filler licensor and filler source edge types, ie, there is no other filler \(n_f' \) in \(G \) with edges \(n_l \overset{r_l}{\to} n_f' \) and \(n_s \overset{r_s}{\to} n_f' \); and (c) \(n_l \) has a filler frame \((s, f)\) with \(f = (f_{\text{type}}, r_l, r_s) \) such that \(f_{\text{type}} \) is the lexeme assigned to \(n_f \), and the filler source \(n_s \) satisfies the type specification \(s \), evaluated at the filler licensor \(n_l \).

Remark 2.82. Fillers are optional by default, ie, the presence of a filler frame does not mean that the lexeme has to generate a filler, only that it can do so. The obligatory presence of a filler must therefore be controlled by means of a cost function that can impose a cost if the lexeme fails to generate a filler. The obligatory absence of a filler can be controlled with cost functions as well.

Pseudocode 2.83. Filler frames are specified with the method:

\[
\text{type}(t) \to \text{fframe}(F, s, f)
\]
Chapter 2. The analysis space: how lexemes license edges in the graph

They should have tried to agree on a compromise.

Figure 2.20: The use of fillers in constructions with verbal complexes and control.

where \(F \) is a unique identifier for the filler frame, \(s \) is a type specification, and \(f \) is a filler triple \([ftype, ffill, fsr]\) where \(ftype \) is a type name, and \(ffill \) and \(fsr \) are edge types.

Example 2.84 (verbal complexes and control). Figure 2.20 shows an analysis involving fillers of a construction with verbal complexes and subject control. All three fillers are created with a filler frame of the form:

\[
\text{fframe(subj filler, } [\text{subj } \leftarrow \text{this}], [\text{simple filler, fill, src}])
\]

This filler frame, which is specified in the lexical entry of the verbs “should”, “have”, and “tried”, licenses the creation of a filler with type simple filler where the filler licensor’s subject acts as the filler source, using the edge labels fill and src for the edges from the filler licensor and filler source to the filler. In the analysis, the verb “should” creates a copy of the subject (ie, a filler), and passes it on to “have”, which in turn creates a copy of the copy and passes it on to “tried”, which finally creates a copy of the second copy and passes it on to “agree”. That is, verbal complexes and control constructions receive the same syntactic analysis.

The filler frame in itself only licenses the creation of the filler — it does not guarantee that the filler is actually created (since fillers are optional by default), nor does it guarantee that the filler will act as subject of the subordinate verb rather than, say, the direct object. To ensure that these conditions are met, the lexical entries of the filler licensors must specify cost functions that impose penalties on analyses that violate these principles. These cost functions are spelled out in detail in our analyses of verbal complexes, raising, and control in section 4.3, and in our probabilistic language model in section 6.2.
2.5. Fillers and gapping: secondary dependencies

They should have tried to agree on a compromise.

Figure 2.21: The simplified DG graph corresponding to Figure 2.20.

Remark 2.85. To make DG graphs easier for humans to create and read, the Danish Dependency Treebank (Kromann and Lynge 2004) uses simplified DG graphs where all fillers have been left out. Instead of specifying the filler directly, the secondary dependency between the filler source and the secondary governor is indicated by a dependency label of the form “[r]”, where r is the dependency role that the filler satisfies in the secondary governor. This encoding contains information about the filler source and the dependency role satisfied by the filler, but does not contain any information about the filler licensor or the edge types (which are normally, but not always, easy to reconstruct automatically). The simplified visualization corresponding to Figure 2.20 is shown in Figure 2.21.

Example 2.86 (simple fillers). A simple filler is a filler that cannot take any complements or adjuncts, but which can satisfy all dependency roles that could have been satisfied by the filler source. Simple fillers are used in most of our analyses involving fillers, including our analyses of verbal complexes, raising and control, relative clauses, parasitic gaps, and peripheral sharing, which are presented in more detail in sections 4.3 and 4.4. One possible lexical entry for simple fillers is shown below. It specifies by means of inheritance that a simple filler is a filler that has an empty complement frame that returns a semantic variable that is coreferent with the filler source (variable_from_source), that copies all adjunct frames from the filler source (aframes_from_source), and which copies its dynamic super-types from the filler source (super_from_source); the cost function no_dependents specifies that it is ungrammatical for the filler to have any dependents.

```
  type(simple filler)
    -> super(filler, variable_from_source, aframes_from_source, super_from_source)
    -> cost(no_dependents, 100 * \[deep \rightarrow this\]);
```
The supertype `variable_from_source` specifies that the filler has a single complement frame with no dependents whose semantics is specified as a variable that is coreferent with the filler source (we assume that the function `sem_variable($node)` returns a semantic variable that is coreferent with `$node`).

```perl
    type(variable_from_source) -> setd(variable_from_source, 'cframe:', sub {
        my ($G, $n) = @_;
        my $source = $G->get_node($n, ^source this);
        return { 'cframe:source' =>
            cframe_object(sem_variable($source))
        };
    });
```

The supertype `aframes_from_source` specifies that the filler’s adjunct frames must be computed dynamically from the filler source by means of a dynamic feature function, implemented as a Perl subroutine that first finds the filler source, and then returns all dynamic adjunct frames associated with the filler source (or an empty hash without any adjunct frames if no filler source was found).

```perl
    type(aframes_from_source) -> setd(aframes_from_source, 'aframe:', sub {
        my ($G, $n) = @_;
        my $source = $G->get_node($n, ^source this);
        return $source ? $G->getd($source, '/^aframe:/') : {};
    });
```

Finally, the supertype `super_from_source` specifies that the filler’s dynamic `super` feature must be computed by prepending the type and supertypes of the filler source to the filler’s list of static supertypes.

```perl
    type(super_from_source) -> setd(super_from_source, 'super:', sub {
        my ($G, $n) = @_;
        return $source ? $G->get($source, '/^super:/') : {};
    });
```
The computation of the dynamic super feature in simple fillers is exemplified in Figure 2.22, where a type \(a\) with static and dynamic supertypes \(A\) acts as filler source for a simple filler with type \(b\) and static supertypes \(B\), which results in \(b\) having dynamic supertypes \(a, A, B\). Similarly, the simple filler \(c\), which has \(b\) as its filler source, has dynamic supertypes \(b, a, A, B, C\). Consequently, if \(a\) satisfies the type specification \(\text{isa}(t)\), then so will \(b, c\), and all other fillers that are generated from \(a\) via a chain of simple fillers, unless \(\text{isa}(t)\) explicitly refers to properties that are affected by the presence of the supertypes \(b, c, B,\) or \(C\). This ensures that if the filler source is (say) an accusative noun, then the filler will also pose as an accusative noun.

While simple fillers can account for the secondary dependencies in verbal complexes, control constructions, relatives, parasitic gaps, and coordinations with peripheral sharing, they are not powerful enough to deal with cases where the same head has more than one set of dependents, as in gapping coordinations (eg, “We must tutor John, you Alice” or “I had tea and then coffee”) and comparatives (eg, “I love tea more than you coffee”). The gapping mechanism is one of the technically most complicated aspects of the DG syntax formalism. An example of a DG analysis of gapping con-
Chapter 2. The analysis space: how lexemes license edges in the graph

In DG, gapping constructions are controlled by means of gapping frames that copy the missing words into the gapped phrase from the filler source tree. Gapping frames are defined formally below.
Definition 2.88. A lexical type \(t \) can have zero or more associated gapping frames of the form \((s, f, i, b, l, r)\) where \(s \) is a type specification that identifies all potential nodes in the dependency graph that can be licensed as the filler source for the gapping filler, \(f \) is the filler triple used to create the gapping filler, \(i \) is the filler triple used to create internal fillers, \(b \) is the filler triple used to create boundary fillers, \(l \) is the landing edge type used for gapping dependents, and \(r \) is the replacement edge type.

Pseudocode 2.89. Gapping frames are implemented as filler frames with additional arguments, and are specified with the method:

\[
type(t) \rightarrow \text{fframe}(F, s, f, i, b, l, r)
\]

where \(F \) is a unique identifier for the filler frame, \(s \) is a type specification, \(r \) is a replacement edge type, \(l \) is a landing edge type, and \(f, i, b \) are filler triples of the form \([\text{type}, \text{fill}, \text{src}]\) where \(\text{type} \) is a type name, and \(\text{fill} \) and \(\text{src} \) are edge types.

Example 2.90. The lexical entry below specifies that any word can function as the first conjunct in a gapping coordination. The gapping frame licenses the generation of a gapping filler, using the current node as the gapping source, and specifies that gapping dependent edges must have edge type \(\text{gapd} \), replacement edges must have type \(\text{repl} \), and specifies the lexical type and edge types associated with the gapping filler, the internal fillers, and the boundary fillers (which are all simple fillers). The lexical entries for gapping fillers and internal fillers are defined in detail in Example 2.96.

\[
type(\text{word}) \rightarrow \text{fframe}(\text{gapping相干}, \text{this},
\quad [\text{gapping_filler}, \text{gap}, \text{gapsrc}],
\quad [\text{internal_filler}, \text{fill}, \text{src}],
\quad [\text{simple_filler}, \text{fill}, \text{src}], \text{gapd}, \text{repl});
\]

In the following, we let \(n_f \) denote a gapping filler generated by a gapping frame \((s, f, i, b, l, r)\) with filler source \(n_s \) in a dependency graph \(G \). We first define the different kinds of nodes in gapping constructions.

Definition 2.91. A non-filler node that lands on \(n_f \) is called a gapping dependent of \(n_f \). A node \(n \) is called a subsourse of \(n_f \) if \(n \) is deeply dominated by \(n_s \), \(n \) is not contained in the deep yield of any gapping filler with filler
Figure 2.25: A DG analysis of “We must tutor John today, you Mary”.

<table>
<thead>
<tr>
<th>Concepts</th>
<th>Matching nodes and edges</th>
</tr>
</thead>
<tbody>
<tr>
<td>gapping filler</td>
<td><must>₉</td>
</tr>
<tr>
<td>gapping dependent</td>
<td>you₈ Mary₁₂</td>
</tr>
<tr>
<td>subsourse</td>
<td>filler₃ tutor₄ today₆ comma₇</td>
</tr>
<tr>
<td>replacement edge</td>
<td>We₁ repl → you₈ tutor₄ today₆ comma₇</td>
</tr>
<tr>
<td>proper subsourse</td>
<td>tutor₄ today₆ comma₇</td>
</tr>
<tr>
<td>internal subsourse</td>
<td></td>
</tr>
<tr>
<td>boundary subsourse</td>
<td></td>
</tr>
<tr>
<td>internal filler</td>
<td></td>
</tr>
<tr>
<td>boundary filler</td>
<td></td>
</tr>
</tbody>
</table>

Figure 2.26: Gapping concepts applied to Figure 2.25.

source n_s, and G contains no replacement edge of the form $d' \leftarrow n$ where d' is a gapping dependent of n_f. A subsourse n is called a proper subsourse if neither n itself, nor any of its transitive governors below n_s, is a filler whose filler source is a subsourse of n_f. A proper subsourse is called an internal subsourse if its deep yield contains a gapping dependent of n_f. A non-internal proper subsourse is called a boundary subsourse if it is a dependent of either n_s or some internal subsourse of n_s. A filler n' with filler licensor $n' \leftarrow fill n_f$ and filler source $n' \leftarrow src n$ is called an internal filler for n in n_f if n is an internal subsourse of n_f, and a boundary filler for n in n_f if n is a boundary subsourse of n_f.

Example 2.92. Figure 2.25 shows (a simplified visualization of) a DG analysis of the gapping coordination “We must tutor John today, you Mary”. The table in Figure 2.26 exemplifies how the concepts from Definition 2.91 are used by listing all matching nodes and edges from Figure 2.25.
2.5. Fillers and gapping: secondary dependencies

We can now define the deep source tree and deep gapping tree in a gapping construction, and the important notion of parallelism between them.

Definition 2.93. The subgraph T of G consisting of n_s, its internal subsources and boundary subsources, and all deep edges connecting them, is called the *deep source tree* of n_f. The subgraph T' of G consisting of n_f, its internal fillers and boundary fillers, and all deep edges connecting them, is called the *deep gapping tree* of n_f. T and T' are called *parallel* if T' is the result of replacing each node n in T with its corresponding filler node n' in T', ie, if every deep edge $d \leftarrow g$ in T corresponds to a deep edge $d' \leftarrow g'$ in T', and vice versa.

Example 2.94. The deep source tree and the deep gapping tree for Figure 2.25 is shown in Figure 2.27. The two trees are clearly parallel.

Finally, we can define what it means for the fillers in the deep gapping tree to be filler well-formed.

Definition 2.95. The gapping filler n_f and its internal fillers and boundary fillers are called *filler well-formed* if (a) the filler source of n_f satisfies the type description s evaluated from the filler licensor of n_f; (b) n_f is well-formed with respect to the filler triple f; (c) the internal fillers of n_f are well-formed with respect to the filler triple i; (d) the boundary fillers of n_f are well-formed with respect to the filler triple b; (e) the deep gapping tree of n_f is parallel with the deep source tree of n_f; (f) each gapping dependent has landing edge $[l \leftarrow n_f]$; and (g) each gapping dependent n'_d of n_f has at most one replacement edge $n'_d \leftarrow n$, and if this edge exists, n must have the same governor as the subsource n_d for n'_d.

In gapping constructions, we have introduced three new kinds of fillers: gapping fillers, internal fillers, and boundary fillers. As boundary fillers, we can use simple fillers (cf. Example 2.86) because they do not allow any
complements, adjuncts, or landed nodes, and generate a semantic variable from the filler source — which is what we want for boundary fillers. But for gapping fillers and internal fillers, we need fillers that can take complements and adjuncts, and compute an independent compositional semantic representation, just like ordinary lexemes. Gapping fillers must additionally function as landing sites so that they allow their gapping dependents as landed nodes. In the following example, we will demonstrate one way of implementing gapping fillers and internal fillers in the DG lexicon.

Example 2.96 (gapping fillers). Gapping fillers and internal fillers can be viewed as fillers that act as perfect replica of their filler source, apart from two modifications: in addition to the supertypes they inherit from their filler source, they must have a supertype that indicates that they are fillers; and their landing site properties must be restricted so that the only landed nodes licensed by their landing frames are the gapping dependents that land on gapping fillers. The lexical entry for internal fillers is shown below:

```plaintext

type(internal_fillers)
-> super(filler, super_from_source, features_from_source, no_dynamic_lframes);
```

The filler supertype is used to indicate that internal fillers are fillers. The supertype `features_from_source` defines a dynamic feature function named `features_from_source` that copies all feature values from the filler source. The name starts with a tilde (ASCII value 126) so that it comes last in the alphabetical sorting order (cf. Remark 2.26), in order to ensure that the feature values produced by `features_from_source` are used as defaults that can be overwritten by other dynamic feature functions.

```plaintext

type(features_from_source)
-> setd(`features_from_source', '', sub { my ($G, $n) = @_; my $source = $G->get_node($n, [source this]); return $source ? $G->getd($source, '//') : {});
```

The `super_from_source` supertype introduced in Example 2.86 ensures that the internal filler also returns the supertypes of its internal source. The supertype `no_dynamic_frames` ensures that internal fillers keep their non-dynamic landing frames and ignore all landing frames generated by `features_from_source`.
The lexical entry for gapping fillers is the same as for internal fillers, except that a gapping filler additionally allows any node to land on it, provided the landed node’s governor is an internal filler or a gapping filler.

In this section, we have shown how secondary dependencies can be encoded by means of fillers that are lexically licensed by a filler licensor. We have introduced simple fillers, which can be used to account for verbal complexes, control constructions, relatives, sharing coordinations, and parasitic gaps. We have also introduced gapping fillers, internal fillers, and boundary fillers, which can be used to account for various gapping constructions. We will return to these issues in sections 4.3 and 4.4, where we provide a more detailed analyses of constructions involving simple fillers and gapping fillers.

2.6 Summary

In this chapter, we have introduced the most important aspects of the DG formalism, apart from cost functions and probability models. In section 2.1, we defined dependency graphs and their properties. In section 2.2, we described DG’s multi-hierarchical inheritance lexicon and its notion of type transformations and dynamic feature functions, and defined a type specification language that can be used to express constraints on DG graphs. In section 2.3, we described DG’s notion of complements and adjuncts and how they relate to functor-argument structure, and we explained the difference between complements and adjuncts from a theoretical point of view. In section 2.4, we described how DG controls word order by means of land-
ing sites licensed by landing frames, and how the surface tree is related to the deep tree by means of the deep upwards movement principle; we also briefly sketched how cost functions can be used to control how landing sites order their landed nodes. Finally, in section 2.5, we described how DG accounts for secondary dependencies by means of simple fillers in verbal complexes, relatives, and control constructions, and by means of other specialized fillers in gapping constructions.

We have also defined a notion of well-formedness within DG, which departs from the classical notion of grammaticality in that a well-formed graph can be highly ungrammatical, either because the speaker’s utterance is ungrammatical, because it is only a partial analysis of the speaker’s utterance, or because it violates grammatical principles that are only expressed by means of cost functions. In the following chapter, we will address how to define cost functions that encode violable constraints with respect to word order, agreement, island constraints, selectional restrictions, etc.
Chapter 3

The cost measure: weighted local constraints

We introduce a set of cost operators, which can be used to encode a wide range of weighted syntactic, semantic, and time-dependent linguistic constraints. We describe how costs are related to grammaticality, probability, OT constraints, and neural networks. Finally, we propose a linguistically plausible axiomatization of speaker preferences that entails the existence of a cost measure.

In DG, a grammar is given by a search space that defines the space of all conceivable analyses, and an associated cost measure that quantifies the absolute well-formedness of different analyses. In the model of human communication we have presented in section 1.1, all we know about cost measures is that they are functions from the set A of analyses into the set $[0, \infty]$ of non-negative real numbers. However, cost measures are only useful if there is an efficient procedure for computing the cost associated with any given analysis. For this reason, we will assume that the cost measure arises as the aggregate sum of a large number of weighted constraints that are associated with particular nodes in the graph. This assumption is not only compatible with the examples of manually written cost functions used as examples in the present chapter, but also compatible with the cost functions in the probabilistic language model presented in section 6.2.
3.1 Cost functions and cost operators

Summary. We describe how cost measures are specified by means of localized weighted constraints that are associated with particular nodes in the graph. The constraints that apply to a particular lexical type are specified in the lexicon, using a small vocabulary of cost operators.

We will now present a formal language that allows us to specify cost measures in the grammar by means of local weighted constraints. These weighted constraints are called cost functions.

Definition 3.1. A cost function is a function \(c \) that given a node \(n \) and a graph \(G \) computes a non-negative cost \(c(G, n) \in [0, \infty] \). Cost functions are specified in the lexicon by means of the cost operators shown in Figure 3.1, and by means of the statistical modelling language introduced in chapter 6. The cost of a node \(n \) in the graph is the sum of all costs induced by cost functions associated with \(n \), and the cost of a graph \(G \) is the sum of the cost of all nodes in \(G \).

Remark 3.2. The set of cost functions associated with a node in the graph can be viewed as a local “penalty code” that specifies what counts as an offense at that node, and how severely it is punished: minor offenses re-
3.2. Examples of cost functions

ceive a small fine, whereas major offenses receive a large fine. Small fines are used to express weak preferences.

The non-probabilistic cost functions are specified in the DTAG lexicon as described below.

Pseudocode 3.3. A cost function costfunc is added to the type t with the method:

\[
type(t) - \rightarrow \text{cost}(name, \text{costfunc})
\]

using the identifier name.\(^1\)

In the following section, we will show how manually written cost functions can be used to encode a wide range of violable linguistic constraints. In section 6.2, we will then present an alternative set of cost functions that is specified indirectly by means of a probabilistic language model.

3.2 Examples of cost functions

Summary. We exemplify how the cost operators can be used to specify a wide variety of hand-written weighted constraints, including constraints on obligatory presence and absence, word order, agreement, island constraints, word distances, selectional restrictions and semantics, and dynamic costs for modelling time-dependent activation levels.

In the following, we will demonstrate how cost operators can be used to express hand-written cost functions that encode a wide range of syntactic constraints. The hand-written cost functions do not constitute a comprehensive DG grammar of Danish, English, or German, nor do we claim that a good DG grammar must necessarily contain these rules, although they could be used as an inspiration. The examples are merely meant to illustrate how the cost operators can be used, and to show that our cost language is general enough to deal with a wide range of phenomena. The hand-written cost functions are also used as an inspiration in the formulation of a probabilistic language model for DG. For simplicity, we will use the cost 100 to signal that a construction is ungrammatical, and the cost 50 to signal that a construction sounds unnatural.

\(^1\)The method \(type(t) - \rightarrow \text{cost}(name, \text{costfunc})\) is defined as an abbreviation for \(type(t) - \rightarrow \text{set}(\text{cost:} name, \text{costfunc})\).
Obligatory presence and absence

Complement frames, landing frames, and filler frames license the presence of certain edges, but they do not punish the absence of a licensed complement or filler. Thus, if we want to signal that an edge must be obligatorily present or absent in order to avoid a grammatical error, we must specify this explicitly by means of a cost function. For example, every word (except for the root word) must obligatorily have a landing site and a governor, so we can punish the absence of these by means of the following two cost functions, defined at the word level.

\[
\text{type(word)} \\
\quad \rightarrow \text{cost(missing_gov, 100 } \times \neg [\text{deep this}]) \\
\quad \rightarrow \text{cost(missing_lsite, 100 } \times \neg [\text{surface this}]);
\]

The type specification \([\text{deep this}]\) returns the set of all governors to the current node, so \(\neg [\text{deep this}]\) will return 1 if the current node does not have a governor, and 0 if it has a governor. Likewise, all dependents of a word are optional by default, since no cost is associated with their absence, but can be made obligatory by imposing a cost on their absence.

Landing sites may want to punish the absence of a landed node. For example, in Danish, a finite verb in a non-interrogative clause must always have a landed dependent (such as a subject, an adverbial, or a topicalized phrase) to its left. This can be specified with the following cost function:

\[
\text{type(finite_verb)} \\
\quad \rightarrow \text{cost(missing_left_landed, 100 } \times \neg ([\text{surface this}] + [\text{this}]);
\]

It is also possible to punish the presence of a node. For example, an adjective can modify a common noun (as in “Good ideas emerged” and “Cold water is nice”), but in the presence of a determiner (eg, “The cold water is nice”), the adjective cannot attach to the common noun but must modify the determiner (cf. footnote 10 on p. 62). This can be encoded in the lexicon by punishing an adjective if it is placed between two nouns where the second noun is the nominal object of the first (eg, a preceding determiner and a following noun), and it modifies the following rather than the preceding noun. The corresponding cost function is shown below.
3.2. Examples of cost functions

In section 6.2, we will present an even better solution: a probabilistic language model that is sensitive to obligatory presence and absence.

Word order violations

To control word order, we must be able to specify cost functions that can check the presence and absence of landed nodes, and the relative word order of different landed nodes, both with respect to the landing site and with respect to each other. To this purpose, we can use the cost operators \([< a]\) and \([> a]\), which match all nodes that come before or after a node with type specification \(a\), and the cost operators \(\text{prev}(a,b)\) and \(\text{next}(a,b)\), which match nodes that, within the set of nodes that match \(a\), immediately precede (respectively, succeed) any node that matches \(b\). For example, we can use the following cost function to state that a preposition should always precede its nominal object:

\[
type(\text{preposition}) \\
\rightarrow \text{cost(bad_order_nobj, } 100 * (\text{nobj} + [< \text{this}] + [\text{mod_this}] + \text{nobj} + [> \text{this}]));\]

The same kind of rule can be used to express a weak preference for letting a subject precede its governing verb. Similarly, we can use the following cost function to state that to the right of a verb, a landed indirect object should precede a landed direct object.

\[
type(\text{verb}) \\
\rightarrow \text{cost(bad_order_dobj_iobj, } 100 * ([\text{dobj_this}] + [\text{surface_this}] + [> \text{this}] \\
+ [< [\text{iobj_this}] + [\text{surface_this}]]){));\]

The probabilistic language model presented in section 6.2 provides an even better way of encoding word order constraints.

Agreement violations

Agreement can be encoded by means of cost functions that check whether a dependent agrees with its governor. For example, case agreement in English (cf. Hudson 2003) can be encoded by distinguishing between nominative and accusative pronouns in the type hierarchy, and stipulating that
nominative pronouns can only appear as subjects, and accusative pronouns only as non-subjects, as shown in the lexical entry below.

\[
\begin{align*}
type(\text{pronoun_nom}) & \rightarrow \text{super(\text{pronoun})} \\
& \rightarrow \text{cost(bad_case, 100 \ast \lnot [\text{subj this}])}; \\
type(\text{pronoun_acc}) & \rightarrow \text{super(\text{pronoun})} \\
& \rightarrow \text{cost(bad_case, 100 \ast [\text{subj this}])}; \\
type(\text{they:pp}) & \rightarrow \text{super(\text{pronoun_nom})}; \\
type(\text{them:pp}) & \rightarrow \text{super(\text{pronoun_acc})};
\end{align*}
\]

This rule is obviously a simplification, but a more detailed rule can be specified with the same mechanisms. For example, to stipulate that conjuncts in coordinated subjects can be nominative (as in “Jane and I went to the Zoo today”), we can replace \([\text{subj this}]\) with the type specification

\[
[\text{subj this}] \mid [\text{subj [\text{conj this}] }]
\]

in pronoun_nom. Similar refinements are required in Danish, where only subjects without a restrictive modifier are allowed to have nominative case (cf. Heltoft and Hansen 2000, p. 25).

Case agreement is highly restricted in Danish and English, but the mechanism sketched above is powerful enough to handle more complicated agreement phenomena as well. For example, German nouns are marked for gender (masculine, feminine, neuter) and must agree with their determiner. In the lexical entry below, the gender of a common noun is indicated by making the noun a subtype of one of the gender types \(\text{masc}\), \(\text{fem}\), or \(\text{neut}\); the determiner induces a cost if the noun’s gender is illegal.

\[
\begin{align*}
type(\text{der:p1}) & \rightarrow \text{super(\text{pronoun, masc})} \\
& \rightarrow \text{cost(bad_gender, 100 \ast ([\text{nobi this}] \lnot \text{masc}))}; \\
type(\text{mann:n1}) & \rightarrow \text{super(\text{noun, masc})}; \\
type(\text{auto:n1}) & \rightarrow \text{super(\text{noun, neut})};
\end{align*}
\]

Alternatively, agreement can be encoded by means of an agreement feature, as in the lexical entry below, where the gender of a noun is encoded in the gender feature, and where a determiner induces a cost if it does not have the same gender as its nominal object.
3.2. Examples of cost functions

\begin{verbatim}
 type(pronoun)
 -> cost(bad_gender, 100 * (val(gender, this) \neq val(gender, [\text{obj} this])));
 type(der:p1) -> super(pronoun) -> set(gender, masc);
 type(mann:n1) -> super(noun) -> set(gender, masc);
 type(auto:n1) -> super(noun) -> set(gender, neut);
\end{verbatim}

The probabilistic language model presented in section 6.2 is capable of modelling agreement as well.

Island constraints

Island constraints (Ross 1967) place restrictions on the possible extraction paths from a word’s governor to its landing site. These restrictions reduce the time complexity of parsing and generation by limiting the number of potential governors a node can have, given its landing site — an issue we will return to in section 7.3. All languages have island constraints, but even though island constraints are generally very similar across languages, there are slight variations from language to language.\(^2\) Figure 3.2 shows a list of island constraints from Borsley (1991, 181–187), and their corresponding formulation in DG.

Island constraints could be encoded as inviolable constraints — an approach taken by many syntactic theories, including GB and HPSG. However, the great variability between island constraints makes it more convenient in DG to treat them as violable constraints that are encoded by means of cost functions that impose a cost whenever they are violated. The lexical entries below shows one way of encoding the island constraints from

\(^2\)For example, the wh-island condition does not always hold in Danish:

(1) Denne forklaring ved jeg ikke hvorfor de godtog.
 This explanation know I not why they accepted.
 I do not know why they accepted this explanation.

Similarly, the complex NP constraint is sometimes violated in Danish:

(2) Denne mærkelige forklaring kender jeg ikke grunden til at de godtog.
 This strange explanation know I not reason-the for that they accepted.
 I do not know the reason for (the fact) that they accepted this strange explanation.

Allwood (1976) discusses a number of violations of the complex NP constraint in Swedish and Norwegian.
Chapter 3. The cost measure: weighted local constraints

<table>
<thead>
<tr>
<th>Constraint Type</th>
<th>Borsley formulation</th>
<th>DG formulation</th>
</tr>
</thead>
<tbody>
<tr>
<td>subject condition</td>
<td>A wh-dependency cannot cross the boundary of a subject.</td>
<td>An extraction path cannot contain a subject edge.</td>
</tr>
<tr>
<td>complex NP constraint</td>
<td>A wh-dependency cannot cross the boundary of a clause and an NP that contains it.</td>
<td>An extraction path cannot contain a verb dominated by a (common) noun.(^a)</td>
</tr>
<tr>
<td>wh-island condition</td>
<td>A wh-dependency cannot cross the boundary of a subordinate wh-question.</td>
<td>An extraction path cannot contain a verb that participates in a wh-construction.(^b)</td>
</tr>
<tr>
<td>adjunct island constraint</td>
<td>A wh-dependency cannot cross the boundary of an adverbial expression.</td>
<td>An extraction path cannot contain an adjunct edge.</td>
</tr>
<tr>
<td>complementizer gap constraint</td>
<td>A wh-dependency gap cannot appear in subject position in a clause introduced by a complementizer.</td>
<td>A verb governed by a complementizer requires a locally landed subject.</td>
</tr>
</tbody>
</table>

\(^a\)In our DG analysis, the complementizer “that” is analyzed as a pronoun with an obligatory verbal object, rather than as a complementizer, because of its ability to appear as a subject. For this reason, such complementizer pronouns must be excluded from the DG formulation of the complex NP constraint.

\(^b\)In our DG analysis, subordinate wh-questions are analyzed as relative clauses where the wh-phrase has been relativized (because some Danish subordinate wh-questions include an obligatory relative pronoun, and because the relative clause is usually optional given an appropriate context). Since relative clauses are analyzed as adjuncts, the wh-island condition is a consequence of the adjunct island constraint.

Figure 3.2: A set of island constraints from Borsley (1991, 181–187), and their corresponding formulation in DG.

Figure 3.2 in the DTAG lexicon. The subject condition can be encoded by letting a verb punish any extraction out of one of its subject edges, and the adjunct island constraint can similarly be encoded by letting a word punish any extraction out of one of its adjunct edges.

```plaintext
\text{type(verb)}
\rightarrow \text{cost(subject.condition, 100 * extract(}[\text{subj this}])\text{)};
\text{type(word)}
\rightarrow \text{cost(adjunct.island.constraint, 100 * extract(}[\text{adjunct this}])\text{)};
```
In our DG analysis, the wh-island condition is a consequence of the adjunct island constraint and therefore does not need to be encoded explicitly. The complementizer gap constraint can be implemented by letting a finite verb punish any non-locally landed subject, provided the verb functions as the verbal object of a complementizer word like “that”, “whether”, “if”, or “for” (following Hudson (1997), we do not recognize complementizers as an independent word class).

\[
\begin{align*}
type(verb) & \rightarrow cost(complementizer_gap_constraint, \\
& 100 \times ([subj this + finite + [vobj that|\ldots|for]] - [land this]));
\end{align*}
\]

With respect to the complex NP constraint, Hudson (2003, “Complex NP-island”) argues that all complex NPs in English acting as islands are noun phrases containing either a relative clause or an apposition. Since Hudson analyzes these clauses as adjuncts, he sees the complex NP constraint as a consequence of the adjunct island constraint. So if one believes his analysis, there is no reason to encode the complex NP constraint in our grammar. As additional evidence for his analysis, it is easy to find naturally-sounding examples of extractions from complex NPs where the clause is not an adjunct (as exemplified in footnote 2 on p. 93), which suggests that such complex NPs do not act as islands, at least in Danish.

Remark 3.4. Although we believe that complex NPs that contain a VP are non-islands if the VP is a non-adjunct, and that the complex NP constraint is therefore overly restrictive, it is an interesting challenge to try to encode the complex NP constraint exactly as it is formulated in Figure 3.2. The constraint differs from other island constraints by being essentially non-local: other island constraints can be checked by looking at all subpaths of length 1 in the extraction path, but the complex NP constraint requires us to examine whether a common noun dominates a finite verb within this path, ie, it involves looking at a path of potentially unbounded length. Since \(extract(a)\) is a local operator, we cannot express the complex NP constraint with \(extract(a)\) alone. So to encode this constraint, we must extend our type specification language with a new dominance operator, \(dominated(a, b)\), which matches any node that is dominated by a node matching \(b\) via a path consisting of edges whose edge types match \(a\). With this extension, we can make the following encoding:

\[
\begin{align*}
type(noun_common) & \rightarrow cost(complex_NP_constraint, extract(this) \\
& + extract(verb + finite + dominated(deep, this)));
\end{align*}
\]
From a computational point of view, the dominated\((a, b)\) operator can be implemented efficiently as a node filter (ie, we do not allow it to generate all nodes dominated by a given node, but we do allow it to act as a filter that can check whether a given node is dominated by another given node). However, since the only reason we need this operator is an overly restrictive formulation of the complex NP constraint, and since we are not aware of any other phenomena where the dominated\((a, b)\) operator is needed, we prefer to exclude it from our type specification language.

Word distances

Word distance plays an important role in natural language. For example, in the Danish Dependency Treebank (Kromann et al. 2003), 44% of all dependents are immediately preceded by their governor, and 88% are fewer than 5 words apart from their governor. It is therefore reasonable to assume that human grammars exhibit a preference for minimizing the distance between a word and its governor and landing site. Evidence in psycholinguistics has shown that, anything else being equal, humans have a preference for low attachment in PP-attachment ambiguities (cf. Gernsbacher 1994). This is exactly the behaviour one would expect from a grammar with a preference for minimizing word distance.

Because the preference for minimizing word distance is only a preference, it does not rule out the large distances observed in long-distance dependencies such as topicalizations and relatives. But it ensures that if there are two potential governors, the closest one will be preferred unless there are stronger syntactic and semantic reasons for preferring the more distant governor. In DG, the word distance preference can be encoded with a cost function that induces a small cost (say, 0.5) for every word separating a node from its governor or landing site, as in the lexical entry below:

\[
\text{type}(\text{word}) \\
\rightarrow \text{cost}(\text{dist}_\text{gov}, 0.5 \times \text{dist}(\text{this}, [\text{deep} \rightarrow \text{this}])) \\
\rightarrow \text{cost}(\text{dist}_\text{lsite}, 0.5 \times \text{dist}(\text{this}, [\text{surface} \rightarrow \text{this}]));
\]

Selectional restrictions and semantics

Selectional restrictions can be encoded in our lexicon if we assume the lexicon contains an ontological hierarchy (cf. Cimiano and Handschuh 2003), and that each lexeme has an associated ontotype feature which contains the
ontological type associated with the phrase headed by the lexeme. For content words like common nouns, the ontotype can be specified in the lexicon, but function words like determiners must compute their ontological type dynamically from their complements, or use a default ontological type in the absence of a complement.

A simple ontological hierarchy is shown in Figure 3.3. Within this hierarchy, the lexeme poet:n could be assigned ontological type Human, the lexeme poem:n could be assigned ontological type Info*Material, and the lexeme write:n could be assigned ontological type Event. The corresponding lexical entries are shown below:

```
type(poet:n) -> set(ontotype, Human);
type(poem:n) -> set(ontotype, Info*Material);
type(write:v) -> set(ontotype, Event);
```

A function word like the determiner “the” copies its ontotype from its nominal object, or uses the default ontotype Entity in the absence of a nominal object. This can be encoded with a dynamic feature function, as shown in the lexical entry below.

```
type(the:pd) -> setd(ontotype, ontotype, sub {
  my ($G, $n);
  my $nobj = $G->get_node($n, [nobj this]);
  return $nobj
    ? $G->getd($nobj, '/\ontotype$/')
    : {ontotype => Entity};
});
```

Using the ontotype feature, lexemes can use cost functions to express preferences for the ontological type of their complements and adjunct governors.
For example, the lexical entry below illustrates how the verb write:v can express a preference for its subject to have ontotype Human, and for its direct object to have ontotype Info.

\[
\text{type}(\text{write}:v) \\
\quad \rightarrow \text{cost}(\text{ontotype}_\text{subj}, 20 \times (\text{val}(\text{ontotype}, [\text{subj} \leftarrow \text{this}]) - \text{isa}(\text{Human}))) \\
\quad \rightarrow \text{cost}(\text{ontotype}_\text{dobj}, 20 \times (\text{val}(\text{ontotype}, [\text{dobj} \leftarrow \text{this}]) - \text{isa}(\text{Info})));
\]

The ontological type system sketched above can be viewed as a highly reduced formal semantics. However, the dynamic feature functions used for implementing the ontotype feature could equally well be used to implement a more sophisticated semantic theory, like DRT (Kamp and Reyle 1993). Given such an implementation of semantics, possibly coupled with an inference system, very general preferences on semantics and pragmatics can be expressed as cost functions and added to the other costs associated with a lexeme. This points to one of the greatest attractions of cost functions: the ability to seamlessly combine preferences from different components of a human language model with each other, in a localized manner so that analysis and generation algorithms can quickly zoom in on the problematic regions in the analysis.

Dynamic costs

So far, we have only considered static costs, ie, costs that do not change over time. However, it is reasonable to assume that human grammars employ dynamic costs, ie, costs that change over time. For example, a cost function in the lexicon may specify that a word should punish the absence of a governor, landing site, or obligatory dependent. However, if there is a low probability that the missing node has appeared in the speech signal at a given time, there is no reason for the parser to trigger an expensive reanalysis operation. But after waiting for some time, there is a good chance that the missing node has appeared, and the parser should then trigger a reanalysis operation that attempts to resolve the violation. On the other hand, if the parser has just attempted an unsuccessful repair operation, it makes sense to wait a while before it makes a new attempt. And after a cost function has indicated a violation for a long time, and the parser has repeatedly tried to find a better analysis, but failed, it makes sense to assume that the input contains a speech error which is impossible to fix. Rather than pondering about the error forever, the parser should stop trying to
3.2. Examples of cost functions

repair the violation by ignoring the resulting cost. This suggests that cost functions should fall below the threshold for triggering a repair operation after a sufficiently long delay.

These insights can be formalized by assuming that the grammar contains statistical information about the time \(T \) when a cost function is resolved, i.e., when it falls permanently below a predefined threshold.

Definition 3.5. We will assume that each node in a graph \(G \) has an associated time span \([t_1, t_2]\) that encodes its duration in the speech signal. The temporal subgraph \(G_t \) of \(G \) is defined as the subgraph consisting of all nodes in \(G \) whose time spans precede \(t \), and all edges in \(G \) connecting these nodes.

Definition 3.6. Let \(G \) be a graph, let \(n \) be a node in \(G \) with time span \([t_1, t_2]\), and let \(c \) be a cost function associated with \(n \). We will say that \(c \) is resolvable with resolution time \(t \in [0, \infty) \) with respect to the threshold \(\tau \) if \(t \) is the time measured from \(t_2 \) where the value of \(c \) falls permanently below \(\tau \), i.e.:

\[
t = \min\{s - t_2 | c \leq \tau \text{ at node } n \text{ in } G_s\}
\]

If \(c \) never falls permanently below \(\tau \), we say that \(c \) is non-resolvable with resolution time \(t = \infty \).

The resolution time for a cost function varies from graph to graph. Sometimes, the violation will be resolved right away; at other times, there will be a long delay before the violation is resolved; and sometimes, the violation is never resolved. The resolution time can therefore be viewed as a random variable \(T \) with an underlying distribution function \(F: [0, \infty) \rightarrow [0, 1] \) satisfying \(F(t) = P(T \leq t) \) where \(F(0) = b, F(\infty) = 1 \), and \(\lim_{t \to \infty} F(t) = r \) where \(b \) is the probability that a cost function is resolvable right away, and \(r \) is the probability that a cost function is resolvable at all. We will decompose \(F \) into a finite and an infinite component by defining:

\[
F(t) = \begin{cases}
 b + (r - b)F_0(t) & \text{if } t \text{ is finite} \\
 1 & \text{if } t = \infty
\end{cases}
\]

where \(F_0(t) = P(T \leq t | 0 < T < \infty) \) is the probability that \(T \leq t \) given that \(T \) is a positive real number.

The parameters \(r \) and \(b \), and the distribution function \(F_0 \) for a cost function \(c \) can be estimated from the actual resolution times observed in a tree-
bank. For our purpose, it is not important that the shape of the estimated distribution fits the true distribution perfectly, as long as we get the q and $1 - q$ quantiles approximately right. For this reason, we will use a parametric estimator based on the flexible, heavy-tailed, and computationally simple Champernowne distribution (cf. Champernowne 1937, 1952), given by the distribution function:

$$F_0(t) = \frac{t^\alpha}{t^\alpha + M^\alpha}$$

where $M > 0$ is the median and $\alpha > 0$ is a tail parameter. If $F_0(t_1) = q$ and $F_0(t_2) = 1 - q$, the values of M and α can be computed as:

$$M = \sqrt{t_1 t_2}, \quad \alpha = \frac{2 \ln q - \ln(1 - q)}{\ln t_1 - \ln t_2}$$

Two examples of Champernowne distributions are shown in Figure 3.4. The distribution function $F_{M,a,b,r}$ on $[0, \infty]$ defined by

$$F_{M,a,b,r}(t) = \begin{cases} b + (r - b)t^\alpha / (t^\alpha + M^\alpha) & \text{if } t \in [0, \infty[\\ 1 & \text{if } t = \infty \end{cases}$$

with $M > 0$, $\alpha > 0$, $b \in [0, 1]$, and $r \in [b, 1]$ is called the projective Champernowne distribution with parameters M, α, b, and r.

3The resolution time can either be measured in seconds in spoken language, or in characters or tokens in written language.

4The Champernowne distribution converges towards the Pareto distribution $G(t) = 1 - (M/t)^\alpha$ (defined on $[M, \infty]$) in the tail, i.e., $F_0(t) \rightarrow G(t)$ as $t \rightarrow \infty$ (cf. Buch-Larsen et al. 2005).
3.2. Examples of cost functions

Figure 3.5: The projective Champernowne distribution $F(t)$ with $b = 0$ and the expected gain $G_1(t, \ell)$, with a finite number of reanalyses when $r < 1$ (left), and an infinite number of reanalyses when $r = 1$ (right).

Our intuitions about the dynamic properties of cost functions can now be formalized on a solid probabilistic basis, by replacing our static cost c with the expected gain $G_c(t, \ell)$, defined as the gain in cost that a repair operation at time t is likely to produce, given that the last repair operation was attempted at time $\ell(t)$. The quantity $G_c(t, \ell)$ can be calculated as the probability $P(T \in [\ell(t), t] | T \not\in [0, \ell(t)])$ times the cost $|c|$, ie, as:

$$G_c(t, \ell) = \frac{P(T \in [\ell(t), t])}{P(T \not\in [0, \ell(t)])} |c| = \frac{F(t) - F(\ell(t))}{1 - F(\ell(t))} |c|$$

We will assume the parser makes a reanalysis whenever $G_c(t, \ell)$ reaches a predefined threshold τ. Since a reanalysis at time t results in setting $\ell(t') = t$ for all t' until the next reanalysis, the graph for $G_c(t, \ell)$ will resemble the saw-tooth graph shown in Figure 3.5. The graph shows how the expected gain builds up from 0 until it reaches the threshold τ, thereby triggering the first reanalysis attempt. If the reanalysis attempt is successful, the cost function (and hence the expected gain) will drop permanently below τ. If the reanalysis attempt is unsuccessful, the expected gain will build up from 0 again, until it either converges towards a value below τ, or reaches the threshold τ again, thereby triggering a new reanalysis attempt.5

5When a cost function c is non-resolvable (ie, $\tau/|c| < 1$ at all times), three things can happen. (a) If $\tau/|c| \geq r$, the expected gain will never reach the threshold τ, and no reanalysis will ever be attempted. (b) If $\tau/|c| < r$ and $r = 1$, the reanalysis attempts will continue indefinitely at exponentially growing times; an approximation shows that if t_n is the time for the nth reanalysis attempt, then $t_{n+1} \simeq t_n (1 - \tau/|c|)^{-1/\alpha}$ for sufficiently large n, so that $t_{n+k} \simeq t_n (1 - \tau/|c|)^{-k/\alpha}$. (c) If $\tau/|c| < r$ and $r < 1$, the expected gain will eventually converge
Thus, the expected gain results in a dynamic cost function that satisfies our earlier list of desiderata: it is initially a fixed value \(b \), and grows with the probability that the resolution time falls within the elapsed time interval; after an unsuccessful reanalysis, it falls back to 0; and if there is a non-zero probability that the resolution time is infinite, the expected gain will eventually fall permanently below our predefined threshold.

On the basis of the expected gain, we can define the dynamic cost operator \(\text{egain} \).

Definition 3.7. The dynamic cost operator \(\text{egain}(b, r, t_1, t_2, q) \) is called the expected unit gain for a projective Champernowne distribution with parameters \((b, r, t_1, t_2, q)\); when evaluated at time \(t \) at a node that was created at time \(t_c \) and last reanalysed at time \(t_r \), it returns the weight:

\[
\frac{F_{M,a,b,r}(t - t_c) - F_{M,a,b,r}(t_r - t_c)}{1 - F_{M,a,b,r}(t_r - t_c)}
\]

where \(M = \sqrt{t_1 t_2} \) and \(a = 2 \frac{\ln q - \ln(1-q)}{\ln t_1 - \ln t_2} \), and where

\[
F_{M,a,b,r}(t) = \begin{cases}
 b + (r - b) \frac{t^a}{(t^a + M^a)} & \text{if } t \in [0, \infty[\\
 1 & \text{if } t = \infty
\end{cases}
\]

The following example shows how the \(\text{egain} \) operator can be used to encode the dynamic cost of a missing governor.

Example 3.8. The cost function \(100 \times \neg \text{[deep this]} \) checks whether the associated node \(n \) has a governor, and returns the cost 100 if the governor is absent. The cost function can be made dynamic by multiplying the cost with the \(\text{egain} \) operator. We will assume that 5% of all words are resolved right away, that 95% of all words have finite resolution time, and that within the set of all words with resolution time other than 0 or \(\infty \), 10% of all words receive their governor within 0.2 seconds, and 90% of all words receive their governor within 2 seconds. This can be specified in the DTAG lexicon with the lexical entry below.

\[
\text{type(word)} \rightarrow \text{cost(missing.gov, egain(0.05, 0.95, 0.2, 2, 0.1) * 100 * \neg \text{[deep this]});}
\]

towards a value below \(\tau \), and no further reanalysis attempts will be made; a calculation shows that the last reanalysis attempt cannot appear earlier than the time \(M \sqrt{(r - \tau / |c|)} / (1 - r) \).
3.3 Grammaticality, OT, probabilities, and neural networks

Time-dependent behaviour is seen in a number of psycholinguistically inspired frameworks, as described below. These frameworks have convinced us about the need to build time-dependency into the grammar, although the time-dependency in DG is achieved by different means than in these frameworks.

Remark 3.9 (time-dependency in competitive inhibition). In the psycholinguistic parsing model proposed by Vosse and Kempen (2000, 12-13), nodes in the syntax graph have an associated activation value which decays exponentially over time. Nodes with a high activation value can be viewed as volatile nodes where dependency links are likely to change, whereas nodes with a low activation value have a more stable dependency structure. Thus, to emphasize the parallels with the model of Vosse and Kempen, we could interpret the dynamic again operator as an activation value rather than a conditional probability.

Remark 3.10 (time-dependency in dynamic dependency parsing). Our dynamic again cost operator can also be viewed as an alternative to the dynamic weighted constraint dependency grammar proposed by Daum (2004). In Daum’s framework, dependency parsing is described as a dynamic constraint optimization problem where the parser is guided towards the “right” analysis by means of incremental changes to the constraints and their weights during parsing, and by means of hypothesized dependency edges for unseen words. In our framework, the grammar remains constant, dependency edges to unseen words are not allowed, and the parser determines the most promising repair sites within the analysis by means of the time-dependent conditional probability weights associated with different cost functions. Thus, while the underlying motivation is the same, the means are very different.

3.3 Grammaticality, OT, probabilities, and neural networks

Summary. We relate costs to other linguistic concepts. First, we argue that ungrammaticality is a local property that corresponds to the violation of a local cost function. We then describe how OT constraints can be interpreted as non-localized polynomial-valued cost functions, how cost functions are related to probabilities, and how the parallel distributed computations of cost functions and dynamic types are related to neural networks.

So far, we have viewed cost measures as an efficient way of encoding a
Figure 3.6: The ratings from a survey of elliptic coordinations in Danish (Kromann 2002a) illustrate the variation in speaker intuitions.

speaker’s preference ordering on the set of all conceivable analyses. However, cost measures are related to several other linguistic concepts, as described in the following.

Grammaticality and acceptability

Speakers of a language have intuitions about how well-formed different utterances are within their language. If they think that an utterance is “wrong,” “unnatural,” or “awkward,” they are usually able to pinpoint the problem and suggest a better alternative. This does not mean that different speakers always have the same intuitions, or that a single speaker’s intuitions are always very clear-cut: on the contrary, there can be great variation between speakers, and informants in linguistic surveys often report that they are very uncertain about their judgments of difficult border-line cases. The variation between speakers is illustrated by Figure 3.6, which shows how 15 speakers rated the grammaticality of 21 sentences with elliptic coordinations in Danish, using the linguistic survey tool LinguistGRID.org (Kromann 2002b); the noisy response pattern is quite typical for linguistic surveys of border-line phenomena.

All syntactic theories must model speaker intuitions in some way or another. As a deliberate simplification, most syntactic theories — including GB, HPSG, LFG, and TAG — assume that speakers classify all utterances as being either “grammatical” or “ungrammatical,” with no degrees
of grammaticality in between. However, linguists have recently begun to
explore more fine-grained notions of grammaticality, using either OT mod-
els with discrete degrees of grammaticality that are assumed to correspond
to graded linguistic constraints (Keller 2000; Sorace and Keller 2005), or
probabilistic models with continuous degrees of grammaticality that are
assumed to arise from the probabilities assigned to different parts of a lin-
guistic analysis (Manning 2003).

Like Manning, we believe that speaker intuitions about grammaticality
and acceptability are determined by the probabilities (or costs) that their
grammars assign to different parts of the speaker’s analyses of the input.
More specifically, we believe that if the cost of a cost function in a particu-
lar analysis is significantly larger than a certain threshold, then the speaker
perceives the node and its relevant neighbourhood to be ill-formed with re-
spect to the linguistic constraint expressed by the cost function; if the cost
is significantly below the threshold, the speaker perceives the local struc-
ture to be well-formed; and if the cost is near the threshold, the speaker
perceives the local structure to be a borderline case with an intermediate
degree of well-formedness.6 These intuitions can be formalized as follows.

Definition 3.11. Let \(n \) be a node in a graph \(G \). We say that \(G \) is ungram-
matical (unacceptable, ill-formed) at \(n \) with respect to the cost function \(c \)
and the threshold \(\tau \) if \(c(G,n) \geq \tau \), and grammatical (acceptable, well-formed) at \(n \)
with respect to \(c \) and \(\tau \) if \(c(G,n) < \tau \).

Obviously, this definition can be generalized to \(n \) levels of grammatical-
ity by using \(n - 1 \) thresholds. To make the model realistic, we should also
assume a certain level of random noise in the judgment of each speaker
(since different speakers have different cost measures, we do not necessar-
ily assume that the speakers have the same “true” judgment).

It is important to note that we have defined grammaticality as a local
rather than global property. An analysis does not become ungrammati-
cal just because it has an aggregate cost that exceeds \(\tau \) (or, equivalently, a

6It is conceivable that different cost functions have different thresholds so that speakers
can encode in their grammars that certain phenomena are grammatical even though they are
very rare (eg, idiomatic phrases with non-standard word order), and that other phenomena
are ungrammatical even though they are very frequent (eg, common grammatical errors that
the speaker has been made aware of in school). However, for simplicity, we will ignore this
aspect and assume that all cost functions have the same threshold.
probability that falls below a certain threshold): it must have a cost function that exceeds \(\tau \) at a particular node in order to be ungrammatical. For the speaker, this locality is very important because the information about local ill-formedness can be used to guide repair operations towards the problematic parts of the analysis during parsing and generation.

Rankings in Optimality Theory

While there are important differences between DG and Optimality Theory (Prince and Smolensky 1993; Tesar 1995; Kager 1999), there are also some interesting similarities. In particular, the rankings used in OT can be viewed as a special case of cost functions, if costs are allowed to be polynomials rather than real numbers. The correspondence between OT rankings and polynomial costs can be defined as follows.

Definition 3.12. Let \(\mathcal{R} \) denote the set of ranked constraints in an OT grammar. Let \(r \) denote the *rank function* from \(\mathcal{R} \) into the non-negative integers, defined by assigning 0 to the lowest ranked constraints in \(\mathcal{R} \), 1 to the next-lowest ranked constraints, etc. Let \(V_c(G) \) denote the number of violations of the constraint \(c \) in the analysis \(G \). Then the *cost polynomial* for \(G \) with respect to \(c \) is defined as \(C_c(G) = V_c(G)X^{r(c)} \) where \(X \) is a polynomial variable. The *total cost polynomial* \(C(G) \) associated with \(G \) is defined as the sum of all the cost polynomials for individual constraints in \(\mathcal{R} \), ie, as:

\[
C(G) = \sum_{c \in \mathcal{R}} C_c(G) = \sum_{c \in \mathcal{R}} V_c(G)X^{r(c)}
\]

With this definition, the coefficient of \(X^r \) in the polynomial \(C(G) \) encodes the total number of violations of rank \(r \). This means that OT’s candidate order reduces to the standard order on polynomials (ie, \(f \geq g \) if the leading coefficient of \(f - g \) is non-negative). Consequently, OT constraints can be viewed as cost functions with polynomial-valued costs. By setting the polynomial variable \(X \) to a positive number, the polynomial cost can be reduced to a real-valued cost.

OT’s use of polynomial-valued costs means that a single violation of a high-ranked constraint always outweighs an unlimited number of violations of lower-ranked constraints. For example, an OT grammar where word order errors have lower rank than agreement errors stipulates that introducing a thousand word order errors into an analysis is better than
introducing a single agreement error into the same analysis. This somewhat counter-intuitive consequence of polynomial costs suggests that OT might be better off by using real-valued costs.

Another difference between OT and DG is that costs in DG are localized — ie, associated with specific nodes in the graph — whereas the global OT cost does not record where the grammatical violations are located. As a consequence, the OT cost cannot be used to guide repair operations during parsing and generation — a crucial property in our proposed parser.\footnote{Creating a localized version of OT would probably not be too difficult.}

Finally, OT and DG differ in how they interpret costs with respect to grammaticality: OT assumes that an analysis is ungrammatical if it does not have minimal cost within its set of competitors (whatever they are, which is not always clearly defined in OT), whereas DG assumes that ungrammaticality is a property that can be computed directly from the local costs, without any consideration for competing analyses. Thus, while there are interesting similarities between the two theories, and OT has inspired the development of DG, the two theories differ in important respects.

Probabilities

Probabilities in probabilistic language models can be viewed as special instances of costs. For example, let G be a probabilistic context-free dependency grammar with production rules π_1, \ldots, π_n where π_i has the form $p_i : H_i \rightarrow L_i h_i R_i$ where p_i is a probability, H_i is a phrasal category, h_i is a word, and L_i, R_i are sequences of phrasal categories. Let $k_i(a)$ denote the number of times π_i occurs in the analysis a. Then a has probability:

$$P(a) = \prod_{i=1}^{n} p_i^{k_i(a)}.$$

Under a minus-log transform, we therefore have:

$$C(a) = - \log P(a) = - \sum_{i=1}^{n} k_i(a) \log(p_i),$$

ie, the multiplicative probability $P(a)$ translates into the additive cost $C(a)$. We can create a DG grammar that corresponds to G as follows: Let the lexical type associated with a word w license all complement frames $L_i + R_i$
where \(w \) matches \(h_i \). Let \(w \) license all its complements (and nothing else) as landed nodes. Let \(w \) generate the cost \(-\log(p_i) \) if there exists \(i \) such that \(w \) matches \(h_i \), the left landed complements of \(w \) match \(L_i \), and the right landed complements of \(w \) match \(R_i \) (in order), and let \(w \) generate the cost \(\infty \) (the probability 0) if no such \(i \) exists.

More generally, dependency-based probabilistic language models can be encoded as DG grammars by interpreting costs as minus-log probabilities. In section 6.2, we will return to the question of how more advanced probabilistic language models can be specified in DG.

Neural networks

The neurons in the brain act as billions of small processing units that carry out their computations in parallel, ie, independently while interacting with clusters of other neurons (cf. Kandel et al. 1991). Because of this architecture, computations in the brain are massively parallel and highly localized, and neural networks seem to provide a good model of the most important aspects of how the brain works. Little is known about the details of how language is stored and processed in the brain, but a number of sophisticated psycholinguistic models of human parsing have been based on neural networks, including Stevenson (1994), Vosse and Kempen (2000), and Stevenson and Smolensky (2005).

In DG, we try to capture the highly localized, parallel nature of the computations in the brain by viewing each node and cost function as an independent processing unit that is responsible for interacting with neighbouring nodes in the graph. Each node checks its associated local constraints, computes the local compositional semantics and phonological content, and computes an aggregate cost on the basis of the costs returned by the individual cost functions. Each cost function computes a cost that measures the ill-formedness of the local graph structure with respect to a particular phonological, morphological, syntactic, semantic, or pragmatic constraint. That is, DG essentially models language processing by means of a network of processing units organized in a graph structure.

This is not exactly the same thing as a neural network, but the emphasis on parallel, localized computation suggests that the DG model may not be incompatible with a neural model of human language processing. In particular, since general neural networks and Turing machines have the same computational power, it is conceivable that DG can be viewed as a high-
level approximation to a neural network where nodes and cost functions correspond to clusters of neurons.

3.4 An axiomatization of speaker preferences

Summary. In section 1.1, we argued that a speaker imposes a complete ordering on the space of all possible analyses, and claimed that it was reasonable to assume that this ordering could be expressed by means of a cost measure. In this section, we propose a linguistically plausible model of speaker preferences and show that it satisfies the axioms of utility theory, so that the von Neumann-Morgenstern theorem forces us to conclude that in any linguistic model that is compatible with our axiomatization, speaker preferences can always be expressed by means of a cost measure.

In this section, we will present two axiomatizations of speaker preferences that entail the existence of a cost measure: a probabilistic model, and a more linguistically appealing corpus model. Since our existence proofs rely heavily on utility theory, we introduce the main notions of utility theory.

Utility theory models how rational agents express preferences between different outcomes. We use the notation \(a \succ b \) if the agent prefers \(a \) to \(b \), \(a \sim b \) if the agent is indifferent between \(a \) and \(b \), and \(a \succsim b \) if the agent prefers \(a \) to \(b \) or is indifferent between them. In order to state the conditions under which an agent’s preference ordering can be expressed by a measurable utility, we must define the notions of complete ordering, mixture set, and measurable utility (cf. Herstein and Milnor 1953).

Definition 3.13. A complete ordering (or total ordering) defined on a set \(S \) is a binary relation \(\succsim \) on \(S \times S \) such that (i) for any \(a, b \in S \), we have \(a \succsim b \) or \(b \succsim a \), and (ii) for all \(a, b, c \in S \), if \(a \succsim b \) and \(b \succsim c \), then \(a \succsim c \). If \(a \succsim b \) and \(b \succsim a \), we write \(a \sim b \) and say that \(a \) and \(b \) are indifferent. If \(a \succsim b \) and \(a \) and \(b \) are not indifferent, we say that \(a \) is preferred over \(b \) and write \(a \succ b \).

Definition 3.14. Let \(S \) be a set equipped with a function that given any \(a, b \in S \) and \(\lambda \in [0, 1] \) returns an element in \(S \), which we denote by \(\lambda a + (1 - \lambda)b \) and call a mixture of \(a \) and \(b \). We say that \(S \) is a mixture set if \(S \) satisfies the following three conditions for all \(a, b \in S \) and \(\lambda, \mu \in [0, 1] \):

\[
(i) \quad 1a + 0b = a
\]

(ii) \(\lambda a + (1 - \lambda)b = (1 - \lambda)b + \lambda a \)
(iii) \(\lambda(\mu a + (1 - \mu)b) + (1 - \lambda)b = \lambda\mu a + (1 - \lambda\mu)b \)

Definition 3.15. Let \(S \) be a mixture set with a complete ordering \(\succcurlyeq \). A function \(u: S \to \mathbb{R} \) is called a measurable utility if \(u \) is order-preserving and linear, i.e., \(u \) satisfies:

(i) \(u(a) > u(b) \) if and only if \(a \succ b \), for all \(a, b \in S \);
(ii) \(u(\lambda a + (1 - \lambda)b) = \lambda u(a) + (1 - \lambda)u(b) \) for all \(a, b \in S \) and \(\lambda \in [0, 1] \).

We can now state the von Neumann-Morgenstern theorem (1944), which was discovered independently by Ramsey (1931). Herstein and Milnor (1953) sharpened the result and gave an elegant proof, using a more general set of axioms.\(^9\) Rather than using the original formulation of the theorem, we will use a formulation that is closer to the formulation by Herstein and Milnor.

Theorem 3.16 (von Neumann and Morgenstern). Let \(S \) be a mixture set with a complete ordering \(\succcurlyeq \). Then a measurable utility can be defined on \(S \) if and only if \(S \) satisfies the following three axioms:

Axiom 1 (substitutability). If \(a \sim a' \), then \(\lambda a + (1 - \lambda)b \sim \lambda a' + (1 - \lambda)b \) for all \(b \in S \) and \(\lambda \in [0, 1] \).

Axiom 2 (continuity). If \(a \succ b \succ c \), then \(b \sim \lambda a + (1 - \lambda)c \) for some \(\lambda \in [0, 1] \).

Axiom 3 (monotonicity). If \(a \succ b \), then \(\lambda a + (1 - \lambda)b \succ \mu a + (1 - \mu)b \) if and only if \(\lambda > \mu \).

Intuitively, Axiom 1 says that if an agent is indifferent between \(a \) and \(a' \), then the agent should also be indifferent when \(a \) is replaced by \(a' \) in a mixture. Axiom 2 and 3 together roughly state that if the agent prefers \(b \) over \(c \), and \(a \) over \(b \), then there is a number \(\lambda \) such that given a choice between

\(^9\)Herstein and Milnor (1953) replaces the von Neumann-Morgenstern axiom set with:

Axiom 1’ (weak substitutability). If \(a, a' \in S \) and \(a \sim a' \), then \(\frac{1}{2}a + \frac{1}{2}b \sim \frac{1}{2}a' + \frac{1}{2}b \) for all \(b \in S \).

Axiom 2’ (continuity). The sets \(\{ \lambda \mid \lambda a + (1 - \lambda)b \succ c \} \) and \(\{ \lambda \mid c \succ \lambda a + (1 - \lambda)b \} \) are closed for all \(a, b \in S \).
3.4. An axiomatization of speaker preferences

For any a, b, and a mixture $\mu a + (1 - \mu)c$ of a and c, the agent prefers b when $\mu < \lambda$ (i.e., the mixture contains too little of a to be better than b), is indifferent when $\mu = \lambda$, and prefers the mixture when $\mu > \lambda$ (i.e., the mixture contains enough of a to be better than b).

Remark 3.17. The proof given by Herstein and Milnor (1953) shows that the measurable utility is determined uniquely if we pick two elements $r_1 \succ r_0$ that are assigned utility 1 and 0, respectively. Given any $a, b \in S$ satisfying $a \succeq r_1 \succ r_0 \succeq b$, and any $x \in S$ with $a \succeq x \succeq b$, we define $\mu_{ab}(x)$ as the unique number in $[0, 1]$ that satisfies

$$\mu_{ab}(x)a + (1 - \mu_{ab}(x))b \sim x.$$

The measurable utility $u: S \to \mathbb{R}$ can then be defined by

$$u(x) = \frac{\mu_{ab}(x) - \mu_{ab}(r_0)}{\mu_{ab}(r_1) - \mu_{ab}(r_0)}$$

for all x between a and b. Herstein and Milnor prove that the value of $u(x)$ is independent of the choice of a and b.

More generally, the measurable utility is defined uniquely given any two values $u(r)$ and $u(r')$ with $r \succ r'$. In principle, this allows us to experimentally reconstruct $u(x)$ for any $x \in S$: pick $a \succ b$ with known utility, and determine $\mu_{ab}(x)$ by asking the agent to compare x with the mixture $\mu a + (1 - \mu)b$ for different choices of μ; then compute $u(x)$ from $u(a)$, $u(b)$, and $\mu_{ab}(x)$ using the formula:

$$u(x) = (u(a) - u(b))\mu_{ab}(x) + u(b).$$

As we have defined the space of analyses, it is not a mixture set. Is it reasonable to assume that speakers follow the axioms of utility theory, i.e., that a speaker’s preference ordering is defined on a mixture set that can be viewed as an extension of the space of analyses, and that this extended preference ordering satisfies the axioms of utility? Obviously, we do not wish to claim that human preferences are always perfectly rational, but we will present two different idealized models of speaker preferences where the axioms of utility apply: a probabilistic model where speakers must compare lotteries consisting of analyses that are drawn randomly according to a known probability distribution, and a corpus model where speakers must compare unordered sequences of analyses. The corpus model is most plausible from a linguistic point of view, but also more complicated than the probabilistic model.
Probabilistic model of speaker preferences

In the probabilistic model of speaker preferences, we assume that speakers are not only capable of comparing individual analyses, but also lotteries of analyses. By a lottery, we mean a random variable over a finite set of analyses with known probabilities, and we use the notation \(p_1a_1 + \cdots + p_na_n \) with \(p_1 + \cdots + p_n = 1 \) to denote the lottery in which analysis \(a_i \) is drawn with probability \(p_i > 0 \). We will assume that the speaker’s ordering of these lotteries satisfies the following four axioms:

Axiom P0 (completeness). The speaker’s ordering of the lotteries is complete.

That is, the speaker either prefers one lottery over another, or is indifferent between them, and the resulting ordering is transitive.

Axiom P1 (substitutability). If the speaker is indifferent between \(s \) and \(s' \), then the speaker is indifferent between \(\frac{1}{2}s + \frac{1}{2}t \) and \(\frac{1}{2}s' + \frac{1}{2}t \).

That is, if the speaker is indifferent between \(s \) and \(s' \), then the speaker is also indifferent between a lottery and an identical lottery where \(s \) is replaced by \(s' \).

Axiom P2 (continuity). If \(a \succ b \succ c \), then \(b \sim p\alpha + (1 - p)c \) for some \(p \in [0, 1] \).

That is, by mixing a good and a bad lottery, we can find a lottery that the speaker will accept as an equivalent substitute for any intermediate lottery.

Axiom P3 (monotonicity). If \(a \succ b \), then \(pa + (1 - p)b \succ p'a + (1 - p')b \) if \(p > p' \).

That is, if we mix a good and a bad lottery, the more of the good lottery the mixture contains, the more the speaker likes it.

It is easy to verify that the set \(S \) of all lotteries is a mixture set, that Axiom P0 ensures that \(S \) is completely ordered, and that Axioms P1–P3 ensure that \(S \) satisfies the axioms of utility. The von Neumann-Morgenstern theorem then proves the existence of a measurable utility on \(S \), i.e., the speaker’s preference ordering can be expressed by means of a cost measure. Is it reasonable to assume that speakers are capable of comparing lotteries of analyses, and that these lotteries satisfy Axioms P0–P3? While
this is not utterly implausible, it is perhaps not the most intuitive set of axioms for a linguistically motivated model of human communication either, and reasonable people might well reject it. But the probabilistic model of human communication is instructive because it provides a simple model in which cost measures arise as a necessary consequence.

Corpus model of speaker preferences

The probabilistic model of speaker preferences may strike some linguists as unintuitive from a linguistic point of view because it overestimates the capabilities of ordinary speakers. After all, it seems unlikely that speakers are capable of comparing complex lotteries with arbitrary probabilities. We therefore propose an alternative model, called the corpus model, whose assumptions about speaker capabilities are far weaker, and hopefully more appealing to many linguists.

In the corpus model, we assume that speakers are not only capable of comparing analyses, but that they are also capable of comparing arbitrary unordered collections of isolated analyses, called corpora. This corresponds to the situation where a teacher must rank the students in a course on the basis of their linguistic performance in a series of essays, so the assumption is not far from real-world practice. Given two corpora a and b, we let $a + b$ denote the concatenation of the two corpora, and we let ka denote the corpus consisting of k copies of a where k is a positive integer. Moreover, we assume that the speaker’s ordering of the corpora satisfies the axioms C0–C4 below (for all corpora a, b, c, d and positive integers k).

Axiom C0. The speaker’s ordering is complete.

That is, given a choice between two different corpora, the speaker will always prefer one over the other, or be indifferent between them, and the resulting ordering is transitive.

Axiom C1. $a \succ b$ iff $a + c \succ b + c$.

That is, the speaker’s relative ordering of two corpora only depends on the analyses that are not contained in both of them, and we can therefore add or delete a shared subcorpus without affecting the ordering.

Axiom C2. $a \succ b$ iff $ka \succ kb$.
That is, if the speaker prefers \(a \) over \(b \), then the speaker also prefers \(k \) copies of \(a \) over \(k \) copies of \(b \), and vice versa, i.e., the ordering is unaffected by duplication of the two corpora.

Axiom C3. If \(a \gtrsim b \) and \(c \gtrsim d \), then \(a + c \gtrsim b + d \).

That is, if the speaker prefers all the parts of a corpus when making a part-wise comparison with another corpus, the speaker also prefers the entire corpus.

Axiom C4. If \(a \succ a' \) and \(b \) is any corpus, then there exists a positive integer \(k \) such that \(ka > ka' + b \).

That is, if \(a \) is better than \(a' \), then we can always find \(k \) such that the difference in goodness between \(k \) copies of \(a \) and \(k \) copies of \(a' \) is larger than the goodness of any given \(b \). Or, phrased differently, a sufficiently large number of small errors will always outweigh a large error.\(^{10}\)

Is it a reasonable idealization to assume that human speakers are capable of comparing corpora in a way that satisfies Axioms C0–C4? Obviously, given the limitations of the human mind, it would be surprising if real speakers were capable of following Axioms C0–C4 consistently, or comparing arbitrarily large corpora. However, as an idealized model of speaker behaviour, we think that the axioms are fairly reasonable. Both probabilistic language models and OT naturally lead to an ordering of corpora that satisfies Axioms C0–C3, and we find it hard to imagine a linguistically reasonable ordering of corpora that fails to satisfy them (although this may admittedly be a sign of our poor imagination). Axiom C4 is satisfied by probabilistic language models, but not by OT. However, this is a point where OT has been criticized (cf. Sorace and Keller 2005, §2.3): the psycholinguistic evidence seems to suggest that a large error can always be outweighed by a sufficient number of small errors — a phenomenon known as a *ganging up effect* — i.e., Axiom C4 holds.

In the end, we leave it to the reader to decide whether these axioms are plausible or not, and whether it is possible to formulate a better model of speaker preferences that systematically predicts speakers’ deviations from our corpus model. Our goal in this section is merely to show that if the

\(^{10}\)Axiom C4 is violated by OT, since the violation of a high-ranked constraint always outweighs any number of violations of lower-ranked constraints.
reader accepts the corpus model as a plausible model of speaker behaviour, then the reader is also forced to accept that a speaker’s preference ordering can be expressed by means of a cost measure. That is, in any linguistic model of human communication that is compatible with the corpus model, cost measures are a necessity, and not just a possibility.

We will do this by proving that we can extend the speaker’s ordering of corpora to an ordering on a mixture set that satisfies the axioms of utility. By invoking the von Neumann-Morgenstern theorem, we can then show that the ordering can be expressed by means of a measurable utility, ie, by means of a cost measure. We start by formalizing our notion of a corpus.

Definition 3.18. Let A be a set of analyses, and let S be a subset of \mathbb{R} that contains 0 and 1 while being closed under addition and multiplication. A corpus over S is a function $c: A \rightarrow S$ such that $c(a) = 0$ for all but finitely many a. The set of all corpora $c: A \rightarrow S$ is called the corpus set induced by A over S.

Our corpus model corresponds to the case where S is the set of all non-negative integers. However, we will extend this initial corpus set by replacing S with the set \mathbb{Q} of rational numbers, and the set \mathbb{R} of real numbers.

Definition 3.19. We define addition and scalar multiplication on a corpus set C by letting $c + c'$ denote the corpus that maps $a \in A$ to $c(a) + c'(a)$, and letting sc denote the corpus that maps $a \in A$ to $sc(a)$, given $c, c' \in C$ and $s \in S$. We let 0 denote the corpus that maps all $a \in A$ to 0, and note that $c + 0 = c$ and $1c = c$ for all $c \in C$.

We can now restate the axioms in our corpus model.

Definition 3.20. Let C be a corpus set with a complete ordering \succsim. We say that C is a corpus space if C satisfies the following four axioms for all $a, b, c, d \in C$ and positive integers k:

Axiom C1. $a \succeq b$ iff $a + c \succeq b + c$.
Axiom C2. $a \succeq b$ iff $ka \succeq kb$.
Axiom C3. If $a \succeq b$ and $c \succeq d$, then $a + c \succeq b + d$.
Axiom C4. If $a \succ a'$ and $b \in C$, then there exists a positive integer k such that $ka \succ ka' + b$.

Obviously, the corpus model corresponds to saying that the speaker has an ordering on the corpus set C induced by A over \mathbb{N}_0 that turns C into a
corpus space. We will now show that \(C \) can be extended to corpus spaces \(C_Q \) and \(C_R \) over \(Q \) and \(R \), respectively.

Definition 3.21. Let \(C_Q \) be the corpus set induced by \(A \) over \(Q \). Given \(c \in C_Q \), let \(p_c \) denote the positive part of the corpus \(c \), ie, the corpus that maps \(a \in A \) to \(\max(0,c(a)) \), and let \(q_c \) denote the smallest positive integer such that \(q_c c(a) \) is an integer for all \(a \in A \). Define an ordering \(\succeq \) on \(C_Q \) by

\[
a \succeq b \quad \text{iff} \quad q_a q_b (p_a + p_b) \succeq q_a q_b (p_a + p_b)
\]

where \(\succeq' \) denotes the ordering on \(C \).

Proposition 3.22. \(C_Q \) is a corpus space over \(Q \) that contains \(C \), and the ordering on \(C_Q \) coincides with the ordering on \(C \).

Proof. Since \(p_c = c, p_{-c} = 0 \), and \(q_c = 1 \) for all \(c \in C \), it follows immediately that \(\succeq \) coincides with \(\succeq' \) on \(C \). To show that \(\succeq \) is well-ordered, it suffices to show that \(a \succeq b \) or \(a \succeq b \) for all \(a, b \in C_Q \). So suppose \(a \succeq b \) and \(a \prec b \), then \(q_a q_b (p_a + p_b) \succeq q_a q_b (p_a + p_b) \) and \(q_a q_b (p_a + p_b) \prec q_a q_b (p_a + p_b) \), a contradiction. To show that \(\succeq \) is transitive, note that \(a \succeq b \) and \(b \succeq c \) implies \(q_a q_b (p_a + p_b) \succeq q_a q_b (p_a + p_b) \) and \(q_b q_c (p_b + p_c) \succeq q_b q_c (p_b + p_c) \). Thus, by Axiom C1 we can add \(q_a q_b p_{-c} \) to the first inequality and \(q_b q_c p_{-a} \) to the second inequality, use Axiom C2 to multiply the first inequality with \(q_c \) and the second with \(q_a \), and then use transitivity in \(C \) to conclude:

\[
q_a q_b q_c (p_a + p_b + p_c) \succeq q_a q_b q_c (p_a + p_b + p_c)
\]

By Axiom C1, we can now subtract \(q_a q_b q_c p_{-b} \) giving \(q_a q_b q_c (p_a + p_c) \succeq q_a q_b q_c (p_a + p_c) \). By Axiom C2, we can divide with \(q_{b} \), giving \(q_a q_c (p_a + p_c) \succeq q_a q_c (p_a + p_c) \), ie, we have shown \(a \succeq c \). This proves transitivity, ie, \(\succeq \) is a complete ordering on \(C \).

To prove Axiom C1 on \(C_Q \), note that the identity \(a = p_a - p_{-a} \) gives \(a - b = p_{a-b} - p_{b-a} \) and \(a - b = p_a - p_{-a} - p_b + p_{-b} \), resulting in the identity

\[
p_{a-b} + p_a + p_b = p_{b-a} + p_a + p_{-b}.
\]
Together with Axiom C1 and C2 and the definition of \(\succcurlyeq \), this gives

\[
\begin{align*}
a \succcurlyeq b & \iff q_a q_b(p_a + p_{-b}) \succcurlyeq' q_a q_b(p_{-a} + p_b) \\
& \iff q_a q_b(p_{a-b} + p_a + p_{-b}) \succcurlyeq' q_a q_b(p_{a-b} + p_{-a} + p_b) \\
& \iff q_a q_b(p_{a-b} + p_a + p_{-b}) \succcurlyeq' q_a q_b(p_{b-a} + p_a + p_{-b}) \\
& \iff q_a q_b p_{a-b} \succcurlyeq' q_a q_b p_{b-a} \\
& \iff q_{a-b} p_{a-b} \succcurlyeq' q_{a-b} p_{b-a} \\
& \iff a - b \succcurlyeq 0.
\end{align*}
\]

From this equivalence, we immediately get \(a \succcurlyeq b \) iff \(a + c \succcurlyeq b + c \), ie, \(C_Q \) satisfies Axiom C1.

To prove Axiom C2, it suffices to show that for any \(a \in C_Q \) and positive integer \(k \), we have \(a \succcurlyeq 0 \) iff \(ka \succcurlyeq 0 \). We can prove this by combining Axiom C2 on \(C \) with the identity \(kp_a = p_{ka} \) for any \(k > 0 \):

\[
\begin{align*}
a \succcurlyeq 0 & \iff q_a p_a \succcurlyeq' q_a p_{-a} \iff k q_a p_a \succcurlyeq' k q_a p_{-a} \\
& \iff q_a p_{ka} \succcurlyeq' q_a p_{-ka} \iff k a \succcurlyeq k b
\end{align*}
\]

To prove Axiom C3, it suffices to show that \(a \succcurlyeq 0 \) and \(b \succcurlyeq 0 \) implies \(a + b \succcurlyeq 0 \). So assume \(a \succcurlyeq 0 \) and \(b \succcurlyeq 0 \), then \(q_a p_a \succcurlyeq' q_a p_{-a} \) and \(q_b p_b \succcurlyeq' q_b p_{-b} \), so Axiom C2 and C3 give

\[
q_a q_b(p_a + p_b) \succcurlyeq' q_a q_b(p_{-a} + p_{-b})
\]

The identity \(p_{a+b} + p_{-a} + p_{-b} = p_{-a-b} + p_a + p_b \) combined with Axiom C1 and C2 then gives

\[
\begin{align*}
q_a q_b(p_{a+b} + p_a + p_b) & \succcurlyeq' q_a q_b(p_{a+b} + p_{-a} + p_{-b}) \\
& \Rightarrow q_a q_b(p_{a+b} + p_a + p_b) \succcurlyeq' q_a q_b(p_{-a-b} + p_a + p_b) \\
& \Rightarrow q_a q_b p_{a+b} \succcurlyeq' q_a q_b p_{-a-b} \\
& \Rightarrow q_{a+b} p_{a+b} \succcurlyeq' q_{a+b} p_{-a-b} \\
& \Rightarrow a + b \succcurlyeq 0
\end{align*}
\]

To prove Axiom C4, it suffices to show that \(a \succcurlyeq 0 \) and \(b \in C_Q \) implies that there exists a positive integer \(k \) such that \(ka \succcurlyeq b \). Suppose this does not hold, then there exists \(a, b \in C_Q \) such that \(a \succcurlyeq 0 \) and \(ka \prec b \) for all positive integers \(k \); since \(p_{b} \prec b \), we may assume \(p_{-b} = 0 \) without any loss of generality. We then have \(q_a p_a \succ curlyeq q_a p_{-a} \) and hence \(q_a q_b p_a \succcurlyeq q_a q_b p_{-a} \), but
$q_{ka}q_{b}p_{ka} \prec q_{ka}q_{b}(p_{-ka} + p_{b})$ and hence $k \cdot q_{a}q_{b}p_{a} \prec k \cdot q_{a}q_{b}p_{-a} + q_{a}q_{b}p_{b}$ for all $k \in \mathbb{N}$, contradicting Axiom C4 in C.

We have proved that the ordering on C_{Q} is complete, satisfies Axioms C1–C4, and coincides with the ordering on C, ie, the proposition holds. □

Since we can replace a with $-a$ if $a \prec 0$, we will assume without loss of generality that $a \succ 0$ for all $a \in A$. With this assumption, we will now extend C_{Q} to the corpus set C_{R}.

Definition 3.23. Let C_{R} be the corpus set induced by A over \mathbb{R}, with $a \succ 0$ for all $a \in A$ where \succ denotes the ordering on C_{Q}. Given $c \in C_{R}$, let

$$L_{n}(c) = \frac{1}{n} \sum_{a \in A} \lfloor nc(a) \rfloor a$$

where $\lfloor r \rfloor$ denotes the largest integer $\leq r$.\(^{11}\) Define an ordering \succ on C_{R} by defining $c \succ c'$ iff $c - c' \succ 0$, and

$$c \succ 0 \quad \text{iff} \quad \forall m \exists n > m : L_{n}(c) \succ' \frac{u_{c}}{m}$$

where u_{c} is the corpus defined by $u_{c}(a) = 1$ if $c(a) \neq 0$, and $u_{c}(a) = 0$ if $c(a) = 0$. Equivalently, $c < 0$ iff $\exists m \forall n > m : L_{n}(c) \prec' \frac{u_{c}}{m}$.

Rather than giving a direct proof that C_{R} is a corpus space, we prove that C_{R} is a mixture set that satisfies Herstein and Milnor’s axioms of utility. We start by proving the following lemma.

Lemma 3.24. Let $c \in C_{R}$, and let m, n be positive integers. Then

$$-\frac{u_{c}}{\min(m, n)} \prec' L_{m}(c) - L_{n}(c) \prec' \frac{u_{c}}{\min(m, n)}.$$

Proof. Since $x - 1 < \lfloor x \rfloor \leq x$, we have

$$\frac{1}{m} \lfloor ms \rfloor - \frac{1}{n} \lfloor ns \rfloor \leq \frac{ms}{m} - \frac{ns}{n} = \frac{1}{n} \leq \frac{1}{\min(m, n)}.$$

\(^{11}\)Our definition of $L_{n}(c)$ only works under the assumption that $a \succ 0$ for all $a \in A$. To deal with general A, it is necessary to replace our definition of $L_{n}(c)$ with

$$L_{n}(c) = \frac{1}{n} \sum_{a \in A} \ell_{a}(nc(a))a$$

where $\ell_{a}(r) = [r]$ if $a > 0$, $\ell_{a}(r) = [r] = -\lfloor -r \rfloor$ if $a < 0$, and $\ell_{a}(r) = 0$ if $a \sim 0$. Similarly, we must define $u_{c}(a) = -1$ if $a \prec 0$, and $u_{c}(a) = 0$ if $a \sim 0$.

Since \(a \succ' 0 \) for all \(a \in A \), we therefore have

\[
L_m(c) - L_n(c) = \sum_{a \in A} \left(\frac{1}{m} \lfloor mc(a) \rfloor - \frac{1}{n} \lfloor nc(a) \rfloor \right) a \prec' \frac{u_c}{\min(m, n)}
\]

The lemma follows immediately by exchanging \(m \) and \(n \). \(\square \)

Proposition 3.25. \(C_R \) is a completely ordered mixture space.

Proof. It follows immediately from the definition of \(C_R \) that it is a mixture space. To prove that \(\succ \) is well-ordered, it suffices to prove that \(c \succ 0 \) or \(c \lessdot 0 \) for all \(c \in C_R \). Suppose we can find \(c \in C_R \) such that \(c \succ 0 \) and \(c \prec 0 \), then \(\exists m_1 \forall n > m_1 : L_n(c) \gg' u_c/m_1 \) and \(\exists m_2 \forall n > m_2 : L_n(c) \ll' -u_c/m_2 \), so for \(n > \max(m_1, m_2) \) we have \(L_n(c) \gg' u_c/m_1 \gg' 0 \) and \(L_n(c) \ll' -u_c/m_2 \ll' 0 \), a contradiction since \(\gg' \) is well-ordered.

To prove that \(\succ \) is transitive, it suffices to prove that \(c \succ 0 \) and \(c' \gg 0 \) implies \(c + c' \gg 0 \). So suppose \(c \gg 0 \) and \(c' \gg 0 \), and let \(m \) be given. Then we can find \(n > 2m \) and \(n' > 2m \) such that \(L_n(c) \gg -u_c/2m \) and \(L_{n'}(c') \gg -u_{c'}/2m \). By Lemma 3.24, \(L_n(c) - L_{n'}(c') \gg -u_{c'}/2m \). Adding the three inequalities together, we therefore get:

\[
L_n(c) + L_{n'}(c') \gg' -\frac{u_c}{2m} - \frac{u_{c'}}{2m} \gg' -\frac{u_c + u_{c'}}{m}
\]

Since \(u_c + u_{c'} \gg u_{c+c'} \), and \(L_n(c+c') \gg L_n(c) + L_n(c') \) follows from \(\lfloor x \rfloor + \lfloor y \rfloor \leq \lfloor x + y \rfloor \), the inequality above shows that

\[
L_n(c+c') \gg' -\frac{u_{c+c'}}{m}.
\]

That is, we have proven that \(c + c' \gg 0 \). \(\square \)

Proposition 3.26. \(C_R \) is an extension of \(C_Q \), ie, the ordering \(\succ \) on \(C_R \) coincides with the ordering \(\succ' \) on \(C_Q \) when restricted to \(C_Q \).

Proof. It suffices to prove that if \(c \in C_Q \), then \(c \gg' 0 \) implies \(c \gg 0 \). So suppose \(c \gg' 0 \). Then \(q_c c(a) \) is an integer for all \(a \in A \), so \(L_n(c) = c \) if \(n \) is a multiple of \(q_c \). It follows immediately that for all \(m \), there exists a multiple \(n \) of \(q_c \) such that \(n > m \) and \(L_n(c) = c \gg 0 \gg -u_c/k \), ie, we have proven that \(c \gg 0 \). \(\square \)

The substitutability axiom follows almost immediately from the following lemma.
Lemma 3.27. If \(c \gtrless 0 \) in \(C_R \) and \(r > 0 \), then \(rc \gtrless 0 \).

Proof. Suppose \(c \gtrless 0 \) and \(r \in]0, 1[\), and let \(m \) be given. Choose \(n > 2m \) such that \(L_n(c) \gtrless -u_c/2m \). Setting \(x = i + s = i'/r + s' \) where \(i, i' \) are integers and \(s \in [0, 1], s' \in [0, 1/r] \), we see that \(\lfloor rx \rfloor - \lfloor x \rfloor = i' - ri = r(s - s') \geq -1 \). Using \(\lfloor x \rfloor \leq x \), we calculate

\[
\frac{\lfloor nrc \rfloor}{n} - \frac{\lfloor nr \rfloor}{n} \cdot \frac{\lfloor nc \rfloor}{n} \geq \frac{\lfloor nrc \rfloor - r \lfloor nc \rfloor}{n} \geq \frac{1}{n} \geq -\frac{1}{2m}.
\]

We therefore have

\[
L_n(rc) - \frac{\lfloor nr \rfloor}{n} \cdot L_n(c) \gtrless -\frac{u_c}{2m}.
\]

Multiplying the inequality \(L_n(c) \gtrless -u_c/2m \) with \(\lfloor nr \rfloor / n \), and using \(\lfloor nr \rfloor / n < 1 \) when \(r \in]0, 1[\), we get

\[
\frac{\lfloor nr \rfloor}{n} \cdot L_n(c) \gtrless -\frac{u_c}{2m} \cdot \frac{\lfloor nr \rfloor}{n} \gtrless -\frac{u_c}{2m}.
\]

Adding the two inequalities, we get

\[
L_n(rc) \gtrless -\frac{u_c}{m},
\]

which proves that \(rc \gtrless 0 \). The proof of Lemma 3.25 shows that for all positive integers \(k, c \gtrless 0 \) implies \(kc = c + \cdots + c \gtrless 0 \). Writing \(r = k + r' \) where \(k \) is an integer and \(r \in]0, 1[\), \(c \gtrless 0 \) implies \(kc \gtrless 0 \) and \(r'c \gtrless 0 \), and hence \(kc + r'c = rc \gtrless 0 \). This proves the lemma.

Proposition 3.28. \(C_R \) satisfies Herstein and Milnor’s weak substitutability axiom, ie, if \(a \sim a' \), then \(\frac{1}{2}a + \frac{1}{2}b \sim \frac{1}{2}a' + \frac{1}{2}b \) for all \(a, a', b \in C_R \).

Proof. To prove the proposition, we note that \(a - a' \gtrless 0 \) implies \(\frac{1}{2}(a - a') = \frac{1}{2}a + \frac{1}{2}b - (\frac{1}{2}a' + \frac{1}{2}b) \gtrless 0 \) by Lemma 3.27. Exchanging \(\gtrless \) with \(\lesssim \), the proposition follows immediately.

\[
\text{Herstein and Milnor’s continuity axiom follows almost immediately from the following lemma.}
\]

Lemma 3.29. \(C_R \) satisfies Axiom C4, ie, if \(a \succ 0 \) and \(b \in C_R \), then there exists a positive integer \(k \) such that \(ka \succ b \).
3.4. An axiomatization of speaker preferences

Proof. Suppose \(a \succ 0 \), then there exists \(m \) such that \(a' = L_m(a) \succ 0 \), and since \(L_m(a) \not\preceq a \), we have \(0 \prec a' \preceq a \). Similarly, \(b' = -L_1(-b) \) satisfies \(b' \preceq b \). Since \(a', b' \in \mathcal{C}_Q \) and \(a' \succ 0 \), it follows from Axiom C4 on \(\mathcal{C}_Q \) that there exists \(k \) such that \(ka' \succ b' \). Since \(a \preceq a' \), we have \(ka \preceq ka' \), and combining this with \(b' \preceq b \), transitivity therefore gives:

\[ka \preceq ka' \succ b' \preceq b. \]

\[\square \]

Proposition 3.30. \(\mathcal{C}_R \) satisfies Herstein and Milnor’s continuity axiom, ie, the sets \(\{ \lambda | \lambda a + (1 - \lambda)b \preceq c \} \) and \(\{ \lambda | \lambda a + (1 - \lambda)b \succeq c \} \) are closed for all \(a, b, c \in \mathcal{C}_R \).

Proof. Define \(U_{a,b,c} = \{ \lambda \in \mathbb{R} | \lambda a + (1 - \lambda)b \succ c \} \). Since closed sets are defined as complements of open sets, Herstein and Milnor’s continuity axiom follows if we can prove that \(U_{a,b,c} \) is open for all \(a, b, c \in \mathcal{C}_R \). Suppose this is not the case, then we can find \(a, b, c \in \mathcal{C}_R \) such that \(U_{a,b,c} \) is not open, ie, there exists \(\lambda \in U_{a,b,c} \) such that for all \(\epsilon > 0 \) we can find \(\delta \in]-\epsilon, \epsilon[\) such that \(\lambda + \delta \not\in U_{a,b,c} \). Write \(s = \lambda a + (1 - \lambda)b - c \) and \(s' = a - b \). Then \(\lambda \in U_{a,b,c} \) implies \(s > 0 \), and \(\lambda + \delta \not\in U_{a,b,c} \) implies \(s + \delta s' \not\preceq 0 \), so obviously \(\delta s' < 0 \). We may assume without loss of generality that \(s' > 0 \).

By Lemma 3.27, we then have \(\delta s' \succ -\epsilon s' \), and hence \(0 \succ s + \delta s' \succ s - \epsilon s' \). In particular, setting \(\epsilon = \frac{1}{k} \) where \(k \) is a positive integer, we have \(s - \frac{1}{k} s' < 0 \), so by Lemma 3.27, we have \(ks - s' \prec 0 \) for all positive integers \(k \). This contradicts that \(s \succ 0 \) and Axiom C4 implies that \(ks > s' \) for some \(k \). From this contradiction, we conclude that \(U_{a,b,c} \) is open for all \(a, b, c \in \mathcal{C}_R \), ie, Herstein and Milnor’s continuity axiom holds. \(\square \)

The interested reader is referred to Munkres (1975) for the definition of open and closed sets, continuity, etc. Propositions 3.25, 3.28, and 3.30 demonstrate that \(\mathcal{C}_R \) satisfies the axioms of utility, so from the von Neumann-Morgenstern theorem (Theorem 3.16), we can conclude that the ordering on \(\mathcal{C}_R \) can be expressed by means of a measurable utility. From the existence of a measurable utility, it immediately follows that \(\mathcal{C}_R \) satisfies Axioms C1–C4, ie, that \(\mathcal{C}_R \) is a corpus space. We therefore have:

Theorem 3.31. \(\mathcal{C}_R \) is a corpus space, and the ordering on \(\mathcal{C}_R \) can be expressed by means of a measurable utility, ie, there exists a linear order-preserving mapping \(u: \mathcal{C}_R \rightarrow \mathbb{R} \).
From Propositions 3.22 and 3.26, we have:

Theorem 3.32. Let \(C \) be a corpus space over \(\mathbb{N}_0 \) with analyses \(A \). Then \(C \) can be extended to corpus spaces \(C_Q \) and \(C_R \), and the ordering on \(C \), \(C_Q \), and \(C_R \) can be expressed by means of a measurable utility \(u : C_R \rightarrow \mathbb{R} \).

We have thereby proven that if the reader accepts our corpus model of speaker preferences, then the reader is also forced to accept that these preferences can be encoded by means of a cost measure. From our point of view, the proponents of any language model should therefore ask themselves whether their language model can be extended so that it can be used to compare all corpora, and whether their extension satisfies Axioms C1–C4. If it does, then they should consider whether their theory can be stated by means of cost functions; if it fails to satisfy one or more axioms, they should ask themselves why this is so, and whether this is linguistically plausible. Finding a linguistically plausible model that fails to satisfy Axioms C1–C4 would, in our view, be a highly interesting result.

As observed in section 1.1, our axioms lead to a non-Chomskyan view of language: rather than viewing grammars as devices that specify whether particular analyses are well-formed or ill-formed, we must view grammars as devices that given an analysis computes a real number that quantifies the absolute ill-formedness of the analysis, thereby determining the speaker’s ordering of different analyses. And rather than viewing parsing and generation as satisfaction problems, we must view them as optimization problems.

Remark 3.33. As far as we know, nobody else has proposed an axiomatization of language speakers by means of speaker preferences and used the von Neumann-Morgenstern theorem to prove the existence of a cost measure. However, Parikh (2000, 2001) proposes a game-theoretic model of human communication that also builds on the ideas presented in von Neumann and Morgenstern (1944). Parikh’s model describes the game-theoretic aspects of human communication, while our model describes the utility-theoretic aspects, and it therefore seems entirely possible to combine the two models into a single unified model of human communication.
3.5 Summary

In this chapter, we have introduced a vocabulary of cost operators and shown how they can be used to encode linguistic constraints on obligatory presence and absence, word order, agreement, island constraints, word distances, selectional restrictions, and time-dependent costs. While the probabilistic language model proposed in section 6.2 is a better and more principled way of specifying cost functions compared to the hand-written cost functions presented in this chapter, our examples demonstrate that our vocabulary of cost operators is expressive enough to encode a wide variety of linguistic constraints. In this chapter, we have also described how the notion of costs relates to grammaticality, OT rankings, probabilistic language models, and parallel distributed processing models based on neural networks. Finally, we have presented a linguistically plausible axiomatization of speaker preferences, and proven that in any model of human communication that is compatible with our axioms, speaker preferences can be expressed by means of a cost measure.
Chapter 4

Examples of linguistic analyses

We exemplify how the DG formalism can be used to analyze a wide range of linguistic phenomena from Danish, English, and German. In particular, we show how the subcategorization mechanisms in DG can account for numerals; how the word order mechanisms can account for topicalization, extraposition, and scrambling; how the filler mechanism can account for control constructions, relatives, and parasitic gaps; how simple fillers and gapping fillers can account for peripheral sharing and gapping coordinations; how dependencies and anaphora can account for discourse structure; how constraints on the periphery can account for the placement of punctuation marks; how lexical transformations can account for derivational and inflectional morphology, as well as expletives and passives; and how the theory has been tested on a large scale by creating a dependency treebank for Danish.

The examples in this chapter are meant to illustrate how different linguistic constructions can be analyzed in DG, and to outline how we can write a rule-based lexicon that licenses these analyses. In chapter 6, we will present a probabilistic language model which provides an alternative way of licensing the analyses presented in this chapter.

4.1 Dependencies: numerals

Summary. We show how the complement and adjunct mechanisms in DG can be used to account for cardinal numerals in Danish, as an example of how to use the complement and adjunct mechanisms in DG.
Numerals form a small, closed word class, and are therefore well suited to demonstrating the use of complement and adjunct mechanisms in our theory. In this section, we will focus on the numeral system in Danish, which is identical to the numeral system in German, apart from some remnants of a 20-based number system. The numeral system in Danish is also very similar to the numeral system in English, and our analysis extends to German and English with very few changes. Here, we will only look at integers, and ignore the numeral expressions used for real numbers, fractions, times, formulas, etc., which must be described by additional rules. Our analysis has previously been outlined in (Kromann et al. 2003).

Definition 4.1. A numeral phrase X has a **phrasal value** $\|X\|$, which is the numerical value of the entire phrase, and a **head value** $|X|$, which is the numerical value of the head word.

In our analysis, the head word in a numeral phrase is always the numeral with the largest head value, unless the larger numeral can be analyzed as the second conjunct in a coordination, in which case the numeral that acts as first conjunct is chosen as the head. Consequently, the numeral phrase “tre hundrede og to” (“three hundred and two”) is headed by “hundrede” (and therefore has phrasal value 302 and head value 100), whereas the numeral phrase “to og tyve” (“two and twenty” = 22) is headed by “two”, although “twenty” has larger head value.

In our analysis, a numeral can take two optional numeral complements: a multiplicative numeral complement with edge type `numm` on its left, and an additive numeral complement with edge type `numa` on its right. The additive numeral complement is either a cardinal numeral or a phrase consisting of the coordinator “og” (“and”) and a numeral conjunct. A numeral can take a nominal object (just like other determiners\(^1\)), but only when the numeral does not act as numeral complement to another numeral.

Example 4.2. An example analysis of a numeral phrase involving all four kinds of dependencies is shown in Figure 4.1. The word “tusind” (“thousand”) has multiplicative numeral complement “fem” (“five”), additive numeral complement “syv hundrede og tre og tyve” (“seven hundred and three and twenty”), and ordinary noun complement “dollars”. The word

\(^1\)We follow Hudson (2003, 2004) by analyzing determiners as pronouns with a possibly optional noun complement.
“tre” (“three”) has coordinated additive numeral complement “og tyve” (“and twenty”).

Remark 4.3. The phrasal value of any composite numeral phrase can be computed by multiplying the head value of the head with the phrasal value of the multiplicative complement, and then adding the phrasal value of any additive complement. Thus, the value of “tre hundrede og to” (“three hundred and two”) is computed as $3 \times 100 + 2 = 302$, and the value of “to og tyve tusind tre hundrede og to” (“two and twenty thousand three hundred and two”) is computed as $(2 + 20) \times 1000 + (3 \times 100 + 2) = 22,302$.

Remark 4.4. Simple numerals in Danish can be grouped into seven subclasses (shown in Figure 4.2), which can in turn be organized in a hierarchy (shown in Figure 4.3), so that we can avoid redundancy in the lexicon by allowing lexemes to inherit the restrictions they place on their multiplicative and additive complements and conjuncts with respect to head value.
Chapter 4. Examples of linguistic analyses

MC

MC0_{0-90} MC_{1\text{0-19}} MC_{20\text{-90}} MC_{100\text{-190}} MC_{1000\text{-millions}}

Figure 4.3: The hierarchical organization of different numeral subclasses.

<table>
<thead>
<tr>
<th>superclass of H</th>
<th>multiplicative complement M</th>
<th>additive complement A</th>
<th>additive conjunct C</th>
</tr>
</thead>
<tbody>
<tr>
<td>MC_0</td>
<td>*</td>
<td>*</td>
<td>*</td>
</tr>
<tr>
<td>$MC_{1.9}$</td>
<td>*</td>
<td>*</td>
<td>$20 \leq</td>
</tr>
<tr>
<td>$MC_{10.19}$</td>
<td>*</td>
<td>*</td>
<td>*</td>
</tr>
<tr>
<td>$MC_{20.90}$</td>
<td>*</td>
<td>*</td>
<td>*</td>
</tr>
<tr>
<td>MC_{100}</td>
<td>$0 <</td>
<td>M</td>
<td>< 20$</td>
</tr>
<tr>
<td>MC_{1000}</td>
<td>$0 <</td>
<td>M</td>
<td><</td>
</tr>
<tr>
<td></td>
<td>M is obligatory if A is present</td>
<td>A must have numm complement</td>
<td>C must have numm comp. if $</td>
</tr>
<tr>
<td>MC_{millions}</td>
<td>$0 <</td>
<td>M</td>
<td><</td>
</tr>
<tr>
<td></td>
<td>M is obligatory</td>
<td>A must have numm complement</td>
<td>C must have numm comp. if $</td>
</tr>
</tbody>
</table>

Figure 4.4: Licensing conditions for Danish numerals (* = ungrammatical).

and phrasal value. These restrictions are shown in Figure 4.4.

We will now show how the restrictions in Figure 4.4 can be encoded within our framework.

Example 4.5. The lexical entry for MC, the class of all cardinal numerals, is shown below. It specifies that cardinal numerals are indefinite pronouns (supertype PI), and introduces a complement frame inherited by all cardinal numerals that specifies that the numeral takes a multiplicative numm complement and an additive numa complement, and a normal nobj complement; it also specifies cost functions that identify bad word orders, illegal nobj complements, and illegal extractions via a numeral complement edge. The functor \&functor_numeral is a code reference to a Perl subroutine that is used as functor for the complement frame, and which computes the phrasal value of the numeral phrase; for simplicity, we will ignore it.
4.1. Dependencies: numerals

\[
\begin{align*}
type(MC) & \rightarrow super(PI) \\
& \rightarrow cframe(numm_numa_nobj, \&functor_numeral, \\
& \quad numm \Rightarrow MC, numa \Rightarrow MC|og:c, nobj \Rightarrow N) \\
& \rightarrow cost(bad_wo_numm, 100 \times ([numm this] - ([land this] + [< this]))) \\
& \rightarrow cost(bad_wo_numa, 100 \times ([numa this] - ([land this] + [> this]))) \\
& \rightarrow cost(bad_wo_nobj_numa, 100 \times ([nobj this] + [land this] \\
& \quad + [< this]|[numa this]))) \\
& \rightarrow cost(bad_wo_numm_lmod, 100 \times ([adjunct this] + [land this] \\
& \quad + [< this] + [> [numm this]])) \\
& \rightarrow cost(illegal_nobj, 100 \times ([numm_numa (this | (og:c + [conj this]))]) \\
& \rightarrow cost(illegal_num_extraction, 100 \times extract(node([numm_numa this]))));
\end{align*}
\]

The class MC0.90 inherits all its complement frames and cost functions from MC, but also specifies that all numeral complements are illegal.

\[
\begin{align*}
type(MC0_90) & \rightarrow super(MC) \\
& \rightarrow cost(illegal_num, 100 \times [numm this]) \\
& \rightarrow cost(illegal_numa, 100 \times [numa this]);
\end{align*}
\]

The class MC1.9 modifies the illegal_numa cost function inherited from MC0.90 by allowing additive conjuncts if the conjunct is a numeral in the class MC20.90.

\[
\begin{align*}
type(MC1_9) & \rightarrow super(MC0_90) \\
& \rightarrow cost(illegal_numa, 100 \times ([numa this] - (og:c+[conj MC20_90])));
\end{align*}
\]

The restrictions posed by the classes MC100, MC1000, and MCmillions are so similar that they warrant the creation of the subclass MC100_millions, a direct subclass of MC. This subclass specifies that a numm complement must have smaller head value than the head (eg, to avoid “thousand” being a numm complement of “hundred”, as in “thousand hundred”), and that a numa complement must have smaller phrasal value than the head value of the head (eg, to avoid “eleven hundred” being a numa complement of “thousand”, as in “thousand and eleven hundred”). It also specifies that a numm complement is obligatory, that a “numa” complement without a co-ordinator must have a “numm” complement, and that a “numa” conjunct in MC100_millions must have a “numm” complement. The type specification \(val(\text{phrase_value,} n)\) is assumed to return the phrasal value associated
with the node \(n \) (it can be implemented either as a feature that is set as a side effect of the semantic interpretation, or as a dynamic feature function), and \(\text{val(head.value, n)} \) is assumed to return the head value of \(n \).

\[
\text{type}(\text{MC100_millions}) \\
\quad \rightarrow \text{super}(\text{MC}) \\
\quad \rightarrow \text{cost}(\text{illegal_numm}, \\
\quad \quad 100 \ast (\text{val(head.value, [numm \leftarrow this])} > \text{val(head.value, this)})) \\
\quad \rightarrow \text{cost}(\text{illegal_numa}, \\
\quad \quad 100 \ast (\text{val(phrase.value, [numa \leftarrow this])} > \text{val(head.value, this)})) \\
\quad \rightarrow \text{cost}(\text{no_numm, 100} \ast (\text{this} - [\text{numm any}])) \\
\quad \rightarrow \text{cost}(\text{no_numm_in_numa, 100} \ast ([\text{numa \leftarrow this}] + \text{MC} - [\text{numm any}])) \\
\quad \rightarrow \text{cost}(\text{no_numm_in_numac, 100} \ast ([\text{conj [numa \leftarrow this]} + \text{og:c}] \\
\quad \quad + \text{MC100_millions} - [\text{numm MC}]));
\]

Unlike the classes MC1000 and MCmillions, the class MC100 does not have any obligatory numm or numa complements, and it requires a numm complement to have head-value smaller than 20. This can be specified with the lexical entry:

\[
\text{type}(\text{MC100}) \\
\quad \rightarrow \text{super}(\text{MC100_millions}) \\
\quad \rightarrow \text{cost}(\text{no_numm, undef}) \\
\quad \rightarrow \text{cost}(\text{no_numm_in_numa, undef}) \\
\quad \rightarrow \text{cost}(\text{no_numm_in_numac, undef}) \\
\quad \rightarrow \text{cost}(\text{illegal_numm}, \\
\quad \quad 100 \ast (\text{val(head.value, [numm \leftarrow this])} \geq 20));
\]

The class MC1000 differs from MC100_millions by only requiring a numm complement in the presence of a numa complement without the “og” coordinator: eg, “one thousand two hundred” is grammatical, but “thousand two hundred” is not. This can be specified with the lexical entry:

\[
\text{type}(\text{MC1000}) \\
\quad \rightarrow \text{super}(\text{MC100_millions}) \\
\quad \rightarrow \text{cost}(\text{no_numm, 100} \ast (\text{this} + [\text{numa MC}] - [\text{numm MC}]));
\]

Finally, the class MCmillions differs from MC100_millions by agreeing in number with the obligatory numm complement. The number agreement can be specified with the following lexical entry:
4.1. Dependencies: numerals

\begin{verbatim}
type(MCmillions) -> super(MC100.millions)
 -> cost(bad_numm_agree, 100 * (val(num, [numm this]) \neq val(num, this)));
\end{verbatim}

The classes MC0 and MC20.90 inherit all their features from MC0.90:

\begin{verbatim}
type(MC0) -> super(MC0.90);
type(MC20.90) -> super(MC0.90);
\end{verbatim}

Having defined all the numeral classes, we can now specify individual numerals with lexical entries of the form shown below:

\begin{verbatim}
type(en:mc) -> super(MC1.9) -> set(head_value, 1) -> set(num, sg);
type(et:mc) -> super(MC1.9) -> set(head_value, 1) -> set(num, sg);
type(to:mc) -> super(MC1.9) -> set(head_value, 2);
\ldots

type(million:mc) -> super(MCmillions) -> set(head_value, 1e6);
\end{verbatim}

Remark 4.6. Our model gives a reasonable approximation to what most speakers of Danish recognize as atomic numerals, and how these atomic numerals combine to form compounds. However, speakers do not always form the same analyses, and many words that are analyzed as atomic numerals by ordinary speakers, will undoubtedly be recognized as compounds by etymologically educated speakers. The numbers from 13 to 19 are composites consisting of a number from 3 to 9 followed by the suffix “ten”, and the numbers 11 and 12 probably originate from the old Germanic expressions for “one left” and “two left” (after counting to 10). Likewise, the numbers 20, 30, and 40 are remnants of a 10-based system, and the numbers 50, 60, 70, 80, and 90 are remnants of a 20-based system — eg, the word “halvtres” is a short-hand for “halv-tre-sinds-tyve” (“half three times twenty”), ie, the number 2.5 \times 20 = 50. There is also a productive system behind words like “million”, “milliard”, “billion”, “billiard”, “trillion”, etc. which is shared by most European languages (except English): a latin numeral phrase denoting \(n \) followed by “illion” means \(10^{6n} \), and \(10^{6n+3} \) when followed by “illiard” — although few speakers of modern Danish know the correct meaning of these numerals.

Several things can be learned from this elaborate account of the numeral system within our framework. First of all, our formalism is powerful enough to account for a non-trivial syntactic phenomenon that involves interaction with the compositional semantics (in this case, the calculation of
phrasal values). However, even though we have ignored many aspects of the numeral system — including case agreement, negative numbers, fractions, intervals, approximations, times, dates, etc. — the resulting lexicon still involves a relatively large number of complex rules that govern word order, obligatoriness, extraction, and syntactic and semantic restrictions on the possible complements. As in other syntax formalisms, writing a thorough wide-coverage grammar for an entire language is therefore a very serious challenge — an observation which motivates our interest in statistical learning techniques in chapters 5 and 6.

4.2 Word order: topicalization, extraposition, scrambling

Summary. We describe how DG deals with word order phenomena such as topicalization, extraposition, scrambling, partial verb phrases, and obligatory extraction.

There is a wide range of linguistic constructions where the dependency structure is unremarkable, but where the word order is so complicated that the constructions are viewed as a challenge in linguistic theories. For example, topicalizations, extrapositions, scramblings, and partial verb phrases have received a great deal of attention because of their difficult word order. In this section, we will describe how DG accounts for these phenomena.

In DG, the word order is controlled by both hard constraints (the continuous surface tree, the deep upwards movement principle, and the landing rules associated with the landing sites) and soft constraints (word order cost functions at landing sites, cost functions for obligatory presence or absence at governors, and island cost functions at island nodes on the extraction path that can be used to prevent the extraction). In some sense, movement in DG resembles Chomsky’s move α operation in that if there is a suitable landing site, movement is permitted by default, unless the extraction is explicitly blocked by some node on the extraction path. As in other syntactic theories, finding the right word order rules is a delicate balance between undergeneration (ie, ruling out word orders that are acceptable in the language we wish to model) and overgeneration (ie, permitting word orders that are unacceptable in the modelled language).
4.2. Word order: topicalization, extraposition, scrambling

Topicalization

Topicalization has historically been seen as a central phenomenon in virtually all formal syntactic theories, perhaps because it is a relatively frequent word order phenomenon in most languages. We will therefore now show how DG accounts for topicalizations in Danish.

Example 4.7. Topicalizations in Danish can be explained by assuming that a finite verb allows all nodes other than finite verbs to land in its left field, provided the left field does not contain any other landed node.\(^2\) This can be encoded by means of a lexical entry like:

\[
\text{type(verb_finite)} \\
\rightarrow \text{lframe(xland} \Rightarrow -(V + \text{finite} | [\text{deep this}])) \\
\rightarrow \text{cost(bad_xland_pos, 100} * ([\text{xland this}] + [\text{> this}])) \\
\rightarrow \text{cost(bad_left_land, 100} * ([\text{surface this}] - [\text{adjunct this}] + [\text{< this}]) \\
\hspace{1cm} + [\text{< surface this}] - [\text{adjunct this}] + [\text{< this}]))
\]

This rule captures most topicalizations in Danish, including topicalizations where the topicalized phrase is headed by a preposition or an infinite verb; it excludes all topicalizations where the left field contains more than one normal complement or topicalized node.

Example 4.8. Consider the dependency structure expressed by the Danish sentence “Jeg har givet Alfred slik” (“I have given Alfred candy”). Danish allows the dependency structure of this sentence to be realized in many different ways which express more or less the same meaning, but with

\(^2\)The landing rule is obviously a crude approximation. For example, vocatives and certain parentheticals are allowed to land in the frontal field, even in the presence of a topicalized phrase, as in examples (1) and (2) below. In (1), the vocative phrase “min elskede” (“my dear”) is analyzed as a voc adjunct of the finite verb “har” (“have”), and in (2), the parenthetical sentence “og det indrømmer jeg” (“and that I admit”) is analyzed as a modp adjunct of the finite verb “har” (“have”).

(1) En is, min elskede, har jeg givet Alfred idag.
 One ice-cream, my dear, have I given Alfred today.
 ‘I have given Alfred one ice-cream today, my dear.’

(2) En is, og det indrømmer jeg, har jeg givet Alfred idag.
 One ice-cream, and that admit I, have I given Alfred today.
 ‘I have given Alfred one ice-cream today, and that I admit.’
slightly different topic-focus structures: Apart from the canonical word order (Figure 4.5 left), Danish also allows topicalization of the verb phrase (Figure 4.5 right), and topicalization of the indirect and direct object (Figure 4.6). In Figure 4.5 and 4.6, the dependency trees are shown above the sentence, and the surface trees below the sentence (fillers are omitted for brevity). Surface edges for extracted nodes are black, whereas surface edges for non-extracted nodes (which are usually omitted in DG visualizations) are grey. The four graphs have the same dependency structure, and only differ with respect to their surface trees: the two surface trees in Figure 4.5 have the same tree structure, but differ with respect to the ordering of the landed nodes of the finite verb, and in the two surface trees in Figure 4.6, the topicalized object lands on the finite verb rather than its governor.

Remark 4.9. In Danish, there is an even greater word order variation in poetry and songs, since speakers can relax the usual word order constraints to ensure rhymes and metric — in DG, this could be modelled by introduc-
4.2. Word order: topicalization, extraposition, scrambling

ing cost functions that impose a cost for violations of the speaker’s chosen scheme for rhymes and metric, and by reducing word order violation costs in the presence of a metric. In a probabilistic language model, this can be achieved by introducing genre as a conditional variable. Figure 4.7 shows two word orders for our original dependency tree, which would be acceptable in songs or poetry. In both examples, the requirement that the frontal field must contain only one landed node is relaxed, and the second example even contains two extracted nodes.

Partial verb phrases

Partial verb phrases (PVPs) in German (Nerbonne et al. 1994, pp. 109–150) is another word order phenomenon where a dependency structure may have several different surface realizations with approximately the same meaning, but slightly different topic-focus structures. DG handles it in the same way as topicalization: by assuming that certain words may function as landing sites for the phrases that have been extracted from the partial verb phrase.

Example 4.10. Consider the German sentences below (from Nerbonne 1994, p. 112).

(1) Er kann seiner Tochter ein Märchen erzählen.
 He can his daughter a fairy-tale tell.
 ‘He can tell his daughter a fairy tale.’
German allows the words in this sentence to be reordered by topicalizing the embedded verb phrase, but letting some of the dependents in the embedded verb phrase remain in their original position, as in (2)–(4) below.

(2) Ein Märchen erzählen kann er seiner Tochter.
 A fairy-tale tell can he his daughter.

(3) Seiner Tochter erzählen kann er ein Märchen.
 His daughter tell can he a fairy-tale.

(4) Erzählen kann er seiner Tochter ein Märchen.
 Tell can he his daughter a fairy-tale.

Remark 4.11. We can explain PVPs by assuming that the finite verb does not only allow a topicalized constituent (in this case, the inner VP) to land on it, but also allows one or more extracted NPs to land in its middle field. We can encode this in the DG lexicon by modifying the lexical entry for finite verbs from Example 4.7 so that the bad_xland_pos cost function does not punish NPs that land in the right field. In addition, we need a set of word order cost functions that ensures that the extracted NPs appear in the correct position in the middle field, which is normally after the finite verb’s subject, direct and indirect object (bad_order_xland_comp), but before the finite verb’s verbal object (bad_order_vobj_xland). The resulting lexical entry is shown below.\(^3\)

\[
\begin{align*}
\text{type(verb_finite)} & \rightarrow \text{lf}(xland \rightarrow - (V + \text{finite} | [\text{deep this}])) \\
& \rightarrow \text{cost(bad_xland_pos, 100} * ([xland this] - \text{noun} + [> this])) \\
& \rightarrow \text{cost(bad_left_land, 100} * ([\text{surface this}] - [\text{adjunct this}] + [< this] \\
& \quad \quad + [< [\text{surface this}] - [\text{adjunct this}] + [< this]])) \\
& \rightarrow \text{cost(bad_order_xland_comp, 100} * ([xland this] + [> this] \\
& \quad \quad + [> [\text{subj_dobj_iobj this}] + [\text{land this}] + [> this]])) \\
& \rightarrow \text{cost(bad_order_vobj_xland, 100} * ([xland this] + [> this] \\
& \quad \quad + [< [\text{vobj this}] + [\text{land this}] + [> this]]));
\end{align*}
\]

With this lexical entry, our lexicon permits the analyses of (2) and (4) shown in Figure 4.8 (to save space, we have replaced all nouns with pronouns). In

\(^3\)The word order cost functions bad_order_xland_comp and bad_order_vobj_xland are a good first approximation to the word order constraints governing extracted nodes in the middle field, but the full set of constraints is probably quite complex. In practice, we expect that it will be simpler and more reliable if word order constraints are induced by a probabilistic language model, as described in Chapter 6.
4.2. Word order: topicalization, extraposition, scrambling

Figure 4.8: DG analyses of the partial verb phrases (2) and (4).

Figure 4.9: DG analysis of the partial verb phrase (5).

the analyses, the verbal object is topicalized, and one or more dependents of the verbal object are extracted from the topicalized VP so that they land in the middle field of the finite verb.

Example 4.12. A more complicated example of a partial verb phrase is shown in (5) below. The associated DG analysis is shown in Figure 4.9: the VP headed by “erzählen” (“tell”) is topicalized, and the indirect object “seiner Tochter” (“his daughter”) is extracted from the topicalized VP to the middle field of the finite verb “wird” (“will”).

(5) Erzählen wird er seiner Tochter ein Märchen können.
 Tell will he his daughter a fairy-tale be-able-to.

Extraposition, scrambling, and cross-serial dependencies

Extraposition, scrambling, and cross-serial dependencies are other examples of word order phenomena where a dependency structure may have
several surface realizations, with slightly different topic-focus structures. In extraposition in German (cf. Rambow and Joshi 1994; Reape 1994), a “zu” infinitive governed by a verb with verb-last order can be extracted from its canonical position before its governing verb to a position after the verb.

Example 4.13. In German, the phrase “die Walzer zu spielen” (“to play the waltzes”) can be moved from a position before “versprochen” to a position after “hat”, as shown in (6) and (7).

(6) weil niemand dem Publikum die Walzer zu spielen versprach
because nobody the audience the waltzes to play promised
‘because nobody promised the audience to play the waltzes’

(7) weil niemand dem Publikum versprach die Walzer zu spielen
because nobody the audience promised the waltzes to play

These examples can be explained by assuming that German verbs allow “zu” infinitives to land in their right field when they have verb-last order (ie, when they function as verbal objects). The resulting analysis is shown in Figure 4.10 (with fillers omitted). Note that the infinitive marker “zu” allows all the dependents of its verbal object as non-locally landed nodes, and that an infinitive verb does not allow any left landed nodes when acting as the verbal object of “zu”. To control the word order in the left and right field of the verb, we will assume that the left field cannot contain extracted “zu” infinitives, and that the right field cannot contain anything but “zu” infinitives, when the verb is in verb-last order. This can be encoded by means of the lexical entry below.
4.2. Word order: topicalization, extraposition, scrambling

Weil dem Publikum niemand versprochen hat die Walzer zu spielen.

Figure 4.11: DG analysis of the extraposition and scrambling (9).

\[
\text{type(verb)} \\
\rightarrow \text{lframe(xland} => (zu + [\text{vobj any} - [\text{deep this}]) \text{if [vobj this]}) \\
\rightarrow \text{cost(bad_right_land, 100} * \\
(\text{[surface this} + [> this] - (zu + [vobj any]) \text{if [vobj this])))} \\
\rightarrow \text{cost(bad_left_land, 100} * (\text{xland this} + [< this] + zu + [vobi any]));
\]

Scrambling (Rambow and Joshi 1994, cf.) is characterized by a deviation from the canonical word order in the middle field.

Example 4.14. As an example of scrambling, consider (8) which has been derived from (7) by interchanging the order in which the subject “niemand” (“nobody”) and the indirect object “dem Publikum” (“the audience”) appears. (9) is identical to (8), except that we have inserted the verb “hat” (“has”) into the verbal complex, to demonstrate the non-locality of the extraction.

(8) weil dem Publikum niemand versprach die Walzer zu spielen
because nobody the audience promised the waltzes to play

(9) weil dem Publikum niemand versprochen hat die Walzer zu spielen
because the audience nobody promised has the waltzes to play

Scrambling is handled in the same way as topicalization and extraction: by positing a landing rule that allows scrambled phrases to land on a certain word. In a probabilistic language model, scrambling is detected as the possibility that an extracted node can be placed in a non-canonical position relative to the other landed nodes.

Example 4.15. In the analysis of (9) shown in Figure 4.11, we assume that the finite verb “hat” (“has”) allows the extracted indirect object “dem Publikum” (“the audience”) to land on it, and that the scrambled word order is...
Chapter 4. Examples of linguistic analyses

Cross-serial dependencies

The DG analysis of cross-serial dependencies (cf. Steedman 1984; Rambow and Joshi 1994) follows the same pattern as the DG analysis of other word order phenomena, as illustrated by the following example.

Example 4.16. Consider the Dutch cross-serial dependency (10) (cf. Steedman 1984; Rambow and Joshi 1994). The example is analyzed like other word order phenomena: a dependent (the phrase “de kinderen” (“the children”) in (10)) is moved from a subordinate verb (“laten”) to the finite verb (“zag”). The resulting DG analysis is shown in Figure 4.12. The verb “zag” is assumed to be a control verb that passes on a filler for “Marie” to “laten”, and “laten” is assumed to be a control verb that passes on a filler for “de kinderen” to “zwemmen”; for simplicity, the fillers generated by the control verbs have been omitted from the graph.

(10) omdat Piet Marie de kinderen zag laten zwemmen
 because Piet Marie the children saw let swim
 ‘because Piet saw Marie let the children swim’
4.2. Word order: topicalization, extraposition, scrambling

Obligatory extraction

Obligatory extraction in Danish is another interesting word order phenomenon.

Example 4.17. In Danish, objects that have been negated with the determiner “ingen” (“no”) are treated in the word order as if they were sentence adverbials, i.e., they cannot remain in the ordinary object position, but must be obligatorily fronted to sentence adverbial position (where objects are not normally permitted).

 I have bought a car today.

 b. *Jeg har en bil købt idag.
 I have a car bought today.

(12) a. *Jeg har købt ingen bil idag.
 I have bought no car today.

 b. Jeg har ingen bil købt idag.
 I have no car bought today.
 ’I have not bought any car today.’

A DG analysis of (11a) and (12b) is shown in Figure 4.13. To encode this analysis in the DG lexicon, we must ensure that finite verbs such as “har” (“have”) license direct and indirect objects headed by negated quantifier pronouns like “ingen” (“no”) as external landed nodes, and that the finite verbs are equipped with word order cost functions that ensure that the extracted object ends up in sentence adverbial position.

Figure 4.13: DG analysis of (12b) and the obligatory extraction (11a).
Example 4.18. Another example of obligatory extraction is provided by the Danish verb “gøre” (“do”), which subcategorizes for a direct object or verbal object which is obligatorily topicalized. Thus, in the example below, the topicalized word order in (13a) is grammatical, whereas the canonical word order (13b) is ungrammatical. The corresponding DG analyses are shown in Figure 4.14.

(13) a. Synge har jeg ofte gjort.
 Sing have I often done.
 ‘I have often been singing.’

 b. *Jeg har ofte gjort synge.
 I have often done sing.

We can explain these phenomena by assuming that the verb “gøre” (“do”) is equipped with a cost function that induces a cost whenever the verbal object is non-topicalized, i.e., whenever it lands in the right field of “gøre”.

In this section, we have sketched how DG can be used to explain a wide range of word order phenomena, such as topicalizations, partial verb phrases, extrapositions, scramblings, cross-serial dependencies, and obligatory extractions. The analyses of these phenomena have followed a general pattern: introducing a landing frame in the word class associated with the landing site that will enable the extraction, and positing cost functions that can be used to constrain the possible landing sites and word orders.
4.3 Fillers: control, relatives, and parasitic gaps

Summary. We describe how DG deals with phenomena that can be explained by means of simple fillers, such as verbal complexes, raising and control, relatives, and parasitic gaps.

There is a wide range of linguistic constructions in which a single phrase seems to satisfy more than one dependency. As described in section 2.5, DG accounts for these constructions by assuming that one word (the filler licensor) can pass on a copy of another word (the filler source) to a third word (the filler governor). According to this analysis, an auxiliary or modal verb in a verbal complex passes on a copy of its subject to its subordinate verb, a control or raising verb passes on a copy of one of its dependents to its subordinate verb, and a relative verb passes on a copy of the relativized noun to some governor within the relative clause. Parasitic gaps are analyzed as filler constructions as well. In this section, we will show how DG accounts for these phenomena in detail. Elliptic coordination is also viewed as a filler phenomenon in DG, but since it involves fillers of a more complex kind, it will be dealt with separately in section 4.4.

In DG theory, fillers do not have any place in the linear word order. When drawing DG graphs with fillers, we are forced to draw the fillers somewhere in the linear order (usually in their canonical position if they were phonetically non-empty), but this placement is completely arbitrary and irrelevant for DG theory.

Verbal complexes

In a verbal complex, a modal or auxiliary verb creates a filler that is used to satisfy the subject role of the verbal object.

Example 4.19. Using simple fillers, we can use the following lexical entry for modal verbs like “will”, “must”, “can”, “should”, etc. that take a subject and an infinitival verbal object, and pass on a copy of its subject to the verbal object. The cost function induces the cost 100 if the filler fails to be present, or if it fails to be analyzed as the subject of the verbal object.

\[
\begin{align*}
type & (\text{modal_verb}) \\
\rightarrow & \text{super(verb)} \\
\rightarrow & \text{cframe(subj_obj, functor, subj} \rightarrow \text{noun, vobj} \rightarrow \text{verb}\text{-infinitive}) \\
\rightarrow & \text{fframe(modal, simple_filler, fill, src, [subj this])} \\
\rightarrow & \text{cost(filler_not_subj_of_vobj, 100} \times \neg ([\text{fill this} + [\text{subj} [\text{vobj this}]]]);
\end{align*}
\]
Chapter 4. Examples of linguistic analyses

He should have fled the tiger.

Specific modal verbs can then inherit these features:

\[
\text{type('will:v1')} -> \text{super(modal.verb)}; \\
\text{type('may:v1')} -> \text{super(modal.verb)};
\]

...

The resulting analysis of verbal complexes with modal and auxiliary verbs is shown in Figure 4.15.

Raising and control

Raising and control constructions are analyzed like verbal complexes, ie, the verb is assumed to pass on a filler for one of its dependents to some subordinate verb.

Example 4.20. The following lexical entry shows how filler frames and simple fillers can be used to encode subject control verbs like “try” (as in “The cook tried to roast the elephant”):

\[
\text{type('try:v1')}
\rightarrow \text{super(verb)}
\rightarrow \text{cframe(subj_pobj, functor, subj => noun, pobj => 'to:sp1')}
\rightarrow \text{fframe(control_subj, simple_filler, fill, src, [subj this])}
\rightarrow \text{cost('filler_not_subj_of_pobj:vobj',}
\]
\[
100 * -([\text{fill this}] + [\text{subj vobj pobj this}]));
\]

The resulting analysis is illustrated in Figure 4.16.

Example 4.21. The following lexical entry shows how we can encode object control verbs like “persuade” (as in “We persuaded the cook to roast the elephant”):
We tried to persuade the cook to roast it.

Figure 4.16: The use of fillers in the analysis of subject and object control.

type('persuade:v1')
 -> super(verb)
 -> cframe(subj_dobj_pobj, functor, subj => noun, dobj => noun,
 pobj => 'to:sp1')
 -> fframe(control_dobj, simple_filler, fill, src, [dobj this])
 -> cost('filler_not_subj_of_pobj:vobj',
 100 * ¬([fill this] + [subj [vobj [pobj this]]]));

The resulting analysis is illustrated in Figure 4.16.

Raising is analyzed in the same way as control constructions.

Example 4.22. In “He seems to lie”, “He” is analyzed as the subject of
“seems” (since there is person and number agreement between the subject
and “seems”), and “seems” then passes on a filler to the infinitival verb
“lie”.

Remark 4.23. It is often argued that the subject of “seems” is not an argu-
ment of “seems” from a semantic point of view — in DG terms, this means
that in the compositional semantics, the functor associated with “seems”
does not consume the semantics associated with “He” as if it was a normal
argument. However, from a syntactic point of view, the subject of “seems”
behaves as any other subject, so even if it is not an argument of “seems”
from a semantic point of view, it is convenient to analyze it as a subject of
“seems” from a syntactic point of view.

Relatives

Filler frames and simple fillers can also be used to account for relatives.
Chapter 4. Examples of linguistic analyses

Remark 4.24. In relatives, we will assume that the finite verb heading the relative clause attaches itself as a modifier of the relativized constituent and creates a filler that has the relativized constituent as its filler source. This can be encoded by means of the following lexical entry:

\[
type(verb) \\
\rightarrow aframe(relative, modifier, rel => noun) \\
\rightarrow fframe(relative, simple_filler, fill, src, [rel \rightarrow this]);
\]

Unlike modal verbs and control verbs, the relative verb does not place any restrictions on the governor of the filler, which allows the filler to be analyzed as a dependent of the relative verb itself or of any other word within the relative clause. The resulting analysis is illustrated by Figure 4.17.

Remark 4.25. The analysis sketched in Remark 4.24 is maintained in the presence of relative pronouns such as “which”, “that”, or “whose”. To avoid a competition between the relative pronoun and the filler with respect to satisfying the secondary dependency, we assume that the relative pronoun obligatorily takes the filler as its so-called filler object. With this analysis, the antecedent of the relative pronoun is syntactically constrained to be identical to the filler object’s filler source. Two examples of this analysis are shown in Figure 4.18 and 4.19.

Free relatives (or wh-questions) are relatives where the relativized phrase is a wh-phrase. Free relatives are analyzed just like other relatives, i.e., the relative verb is assumed to create a filler that satisfies some dependency within the relative clause.

Example 4.26. Three Danish examples of free relatives are shown in (14)–(16) below. The corresponding DG analyses are shown in Figure 4.20 and 4.21 (cf. Kromann et al. 2003, “Verbs”).
4.3. Fillers: control, relatives, and parasitic gaps

The painting that we got a glimpse of was a fake.

Figure 4.18: The analysis of a relative with a relative pronoun.

The artist from whom we bought it was famous.

Figure 4.19: The use of fillers in relatives with a relative pronoun.

(14) Hvem de vælger er afgørende.
 Who they elect is decisive.
 ‘It is decisive who they elect.’

(15) Han spurgte hvem der kom.
 He asked who that came.
 ‘He asked about who was coming.’

(16) Alle ved hvor svært det er.
 Everybody knows how difficult it is.

The analysis of wh-questions as relatives is supported by the observation that the relative pronoun “der” is explicitly present in (15).

Parasitic gaps

Filler frames and simple fillers can also be used to account for parasitic gaps. There is a vast literature on parasitic gaps, summarized by Culicover and Postal (2001) and Parker (1999). Many linguistic formalisms provide an account of them, including GB (Chomsky 1982; Engdahl 1982, 1983), Combinatory Categorial Grammar (Steedman 1987), and HPSG (Pollard
and Sag 1994). Parasitic gaps owe their name to GB, where the parasitic gap depends on the presence of another gap, called the licensing gap. In DG, gaps are used much more sparingly than in GB, and many of the constructions that involve gaps in GB are therefore analyzed as gapless extractions or topicalizations in DG.

Definition 4.27. In DG, a parasitic gap can be described as a simple filler that is generated by a filler licensor \(l \) using a filler source \(s \) that is related to \(l \) by means of two intermediary nodes \(g \) and \(d \), as follows:

- \(d \) must equal \(l \) or have \(l \) as its relative modifier;
- \(g \) must be a verbal governor of \(d \);
- \(s \) must be either (a) a locally landed direct or indirect object of \(g \) different from \(d \) that precedes a locally landed subject of \(g \), or (b) a non-subject noun that is extracted via any dependent edge of \(g \) except for the edge containing \(d \).

Remark 4.28. The filler licensing rule for parasitic gaps can be encoded as the following filler rule, which is inherited by every word in the DTAG lexicon:
4.3. Fillers: control, relatives, and parasitic gaps

The lexical entry proposed in Remark 4.28 can account for most of the examples that have been proposed in the literature on parasitic gaps.

Example 4.29. The lexical entry for parasitic gaps can explain almost all of the examples of parasitic gaps presented in Pollard and Sag (1994, p. 182–200), including the examples (17)–(22) below (the words acting as l, d, g, and s are indicated with subscripts, and the word acting as the governor of the parasitic gap is indicated with the subscript p).

(17) That was the rebel leader who rivals of shot.
(18) Those boring old reports, Kim filed without reading.
(19) Which of our relatives should we send snapshots to?
(20) Who did my talking to bother?
(21) Who did you consider friends of angry at?
(22) Here’s the jerk that I expected pictures of to bother.

For example, in (17), the word “rivals” acts as filler licensor l for the parasitic gap and as intermediary node d, the word “shot” acts as the governor g of d (d is the direct object of g), and the word “who” acts as the filler source s. The resulting analysis is shown in Figure 4.22.

Example 4.30. The lexical entry for parasitic gaps can also account for the examples (23)–(26) below from Haegeman (1994/1991, p. 473–478):

(23) Poirot is a man whom you distrust when you meet.
(24) Poirot is a man that\textsubscript{s} anyone\textsubscript{d} that talks\textsubscript{l} to\textsubscript{p} usually likes\textsubscript{g}.

(25) Poirot is a man who\textsubscript{s} I interviewed\textsubscript{g} before\textsubscript{ld} hiring\textsubscript{p}.

(26) Poirot is a man who\textsubscript{s} I interviewed\textsubscript{g} before\textsubscript{ld} wondering when to hire\textsubscript{p}.

Example (24) is particularly interesting, because the landing site \textit{l} (“that”) does not coincide with the node \textit{d} (“anyone”); the corresponding DG analysis is shown in Figure 4.23.

\textbf{Remark 4.31.} In direct and indirect object relatives, such as (24), there is an ambiguity with respect to how we select the filler source for the parasitic gap: we can either select the relative pronoun as filler source, or the filler generated by the relative verb. The two readings have the same semantic interpretation when the relative pronoun and the filler are coreferent, but it is also possible to find examples where the two readings differ with respect to their interpretation, as in (27) and (28) below, whose analyses are shown.
4.3. Fillers: control, relatives, and parasitic gaps

Figure 4.24: A relative clause in which the parasitic filler may have two possible sources: the relativized noun, and the fronted direct object in the relative clause.

in Figure 4.24.

(27) Poirot is a man whose motives you distrust when you meet.

(28) Poirot is a man whose superiors you distrust when you meet.

Example 4.32. The lexical entry for parasitic gaps can also account for all the authentic examples of parasitic gaps collected by Potts (2004), except for the example “Please Inspect Before Using”. The problem with this example is that the understood argument “it” is not present in the graph, and therefore cannot act as the filler source for the parasitic gap. To account for this example, we could extend our theory by letting an anaphoric filler be used as a default for missing complements. The licensor of the parasitic gap would then be able to use the anaphoric filler as a filler source for the parasitic gap. However, since we do not have a detailed understanding of how default complements should be implemented, we will leave this matter to future research.
In this section, we have shown how simple fillers can be used to account for constructions that involve secondary dependencies, such as verbal complexes, raising and control, relatives, and parasitic gaps. In the following section, we will demonstrate how fillers can be used to account for elliptic coordinations.

4.4 Coordination: sharing, gapping

Summary. We present a filler-based analysis of elliptic coordination, including peripheral sharing, subject sharing, and gapping.

In the previous section, we saw how fillers can be used to account for verbal complexes, raising and control, relatives, and parasitic gaps. In this section, we will show that fillers can also be used to account for two kinds of elliptic coordination, peripheral sharing (often called right node raising in the literature) and gapping.

Peripheral sharing

Peripheral sharing (or right node raising) is a phenomenon where one or more dependents are shared by several conjuncts. It is a relatively frequent construction. For example, approximately 0.66% of all words in the Danish Dependency Treebank have been marked as heads of a secondary conjunct with peripheral sharing.

Example 4.33. In the peripheral sharing (29) below, the word “She” functions as the subject of both “was” and “listened”, and the word “opera” functions as the nominal object of both “of” and “to” — ie, the words “She” and “opera” are shared by the words “was” and “listened”, and “of” and “to”, respectively. The DG analysis of this example is shown in Figure 4.25.

(29) She was very fond of, and often listened to, opera.

Example 4.34. Peripheral sharing may involve any number of conjuncts, as shown by (30), where the word “He” functions as the subject of “spotted”, “aimed”, and “listened”, and the phrase “the elephant” functions as the direct object of “spotted” and “shot”, and as nominal object of “at”. The DG analysis of this example is shown in Figure 4.26.

(30) He suddenly spotted, aimed at, and shot the elephant.
4.4. Coordination: sharing, gapping

She was very fond of opera and often listened to it.

He suddenly spotted, aimed at, and shot the elephant.

Remark 4.35. What is characteristic about these examples of sharing is that the shared dependents are located at the periphery of the phrase, i.e., the shared phrases are placed either before all non-shared words within the coordination, or after them. In both Danish and English (and many other European languages, we presume), sharing seems to be overwhelmingly peripheral, with one exception in Danish and German, known as empty subject coordination in some theories (cf. Hartmann 2000, p. 43ff): non-peripheral subjects can sometimes be shared as well, as illustrated by (31), where the shared subject “hun” (“she”) is placed between the heads of the two conjuncts. The DG analysis of this example is shown in Figure 4.27.

(31) Opera holdt hun meget af og lyttede ofte til.
 Opera was-fond she very of and listened often to.
 ‘She was very fond of opera and often listened to it.’

Remark 4.36. To account for coordination and sharing in DG, we will assume that a coordination is headed by its first conjunct, and that the re-
maining conjuncts (called *secondary conjuncts*) attach themselves as conj conjuncts of the first conjunct; following Schachter (1977, p. 88) (cf. Hartmann 2000, p. 24), we will assume that coordinators are analyzed as coord conjuncts of the heads of secondary conjuncts. Thus, in our analysis, every word is capable of attaching itself as a conj adjunct to a preceding word, if the two conjuncts are sufficiently parallel with respect to word class, syntactic structure, and semantics. The adjunct frame that licenses conj dependencies can be encoded by means of the following lexical specification at the word level:

5The Danish Dependency Treebank has a slightly different analysis of coordinations: in a coordination of the form “X and Y”, DDT assumes that “and Y” forms a phrase that is headed by the coordinator “and”, whereas we now analyze “and” as an adjunct of Y. The main reason for this change of analysis is that the coordinator is often optional (at least in Danish and English), and it is therefore inconvenient to give it a very prominent role in the dependency structure. For example, coordinations rarely have more than one coordinator, even when they have three or more conjuncts, and even in coordinations with only two conjuncts, it is often possible to omit the coordinator (eg, in sentential coordination). Rather than writing down two sets of rules — one for conjuncts with a coordinator and one for conjuncts without a coordinator — the new analysis makes it possible to use one rule to control how a word attaches itself as a secondary conjunct to another word, and a simple adjunct rule to control how the coordinator attaches itself to the secondary conjunct.

6Since parallelism is a matter of degree, it is better expressed as a cost function than as a hard constraint in the adjunct frame. We will therefore assume that the semantic component imposes a cost or probability that quantifies the semantic and pragmatic non-parallelism between the two conjuncts, and that the parallelism with respect to word class and syntactic structure is learned by a probabilistic language model, as described in chapter 6.
In our analysis, a shared dependent must be governed by some word within the first conjunct, and the head of the first conjunct must be contained in the shared dependent’s extraction path (possibly as the shared dependent’s landing site). All other conjuncts must create a filler with the shared dependent as the filler source; this filler is then used to establish the secondary dependency between the shared dependent and its secondary governors within the other conjuncts. This can be encoded in the DTAG lexicon by means of the filler frame shown below.

```
type(word)
  -> aframe(conjunct, modifier, conj => [< this]);
```

The filler frame licenses the creation of a simple filler (with filler edge type share and source edge type src) at a node that has attached itself as a conjunct of the head \(H \) of the first conjunct, provided the filler source is either a non-conjunct that lands on \(H \), or has been extracted through one of the non-conj edges of \(H \).

Example 4.37. In Figure 4.25, 4.26, and 4.27, all shared dependents land on the head of the first conjunct. Figure 4.28 (an example due to Kahane 1997) shows our analysis of a peripheral coordination where one of the two shared dependents has been extracted from the first conjunct.

Remark 4.38. Both coordination in general and sharing in particular are highly restricted phenomena, so in a rule-based lexicon we need a set of cost functions that can impose a cost whenever a restriction is violated. For example, a secondary conjunct should impose a cost if a non-shared dependent has been extracted out of the first conjunct, a restriction known as the coordinate structure constraint (encoded as the cost function coordinate_structure_constraint in the lexical entry below).
Figure 4.28: Analysis of peripheral sharing with an extracted shared dependent.

The cost function shared_by_sibling states that a secondary conjunct should also impose a cost if it fails to generate a filler for a dependent that has been used as a shared dependent by another secondary conjunct, i.e., if the secondary conjuncts disagree about what the shared dependents are. Finally, the cost functions left_shared_after_nonshared and right_shared_before_nonshared state that a secondary conjunct should impose a cost if any shared dependent is non-peripheral, i.e., the shared dependent lands on the head of the first conjunct and this landing site has a non-shared landed node that is more peripheral than the shared node.

Remark 4.39. The account of peripheral sharing in this section may be somewhat simplistic, since it cannot handle examples where the shared dependent must receive different filler arguments from different conjuncts, as in (32) where the shared verbal object “write a book” receives the subject “Jane” from the first conjunct, and the subject “Mary” from the second
conjunct. The example (33) from Hartmann (2000, p. 104) shows the same phenomenon in German.

(32) Jane must and Mary should write a book.

(33) Peter sollte es und Maria wollte es Hans erzählen.
 Peter should it and Maria wanted it Hans to-tell
 ‘Peter should tell it to Hans, and Maria wanted to tell it to Hans.’

It is possible to account for such examples by assuming that secondary conjuncts copy the secondary dependent by means of a gapping filler rather than a simple filler. In (32), the gapping mechanism allows the secondary conjunct to replace the default subject (a filler for “Jane”) with the new subject (a filler for “Mary”). Figure 4.29 shows the resulting DG analysis.

Gapping coordinations

Gapping is an important syntactic phenomenon which has been analyzed in a wide range of syntactic frameworks. For example, the large literature on gapping includes works within GB (Hartmann 2000; Johnson 2002), GPSG and HPSG (Gazdar 1981; Sag et al. 1985; Pollard and Sag 1994), Combinatory Categorial Grammar (Steedman 1990), Tree Adjoining Grammar (Sarkar and Joshi 1996), and dependency grammar (Melcuk 1988; Kahane 1997; Lombardo and Lesmo 1998; Hudson 2003; Hellwig 2003). In the following, we will show that the mechanisms for gapping coordinations that were introduced in section 2.5 can be used to provide a satisfactory account of gapping coordinations in Discontinuous Grammar.
Chapter 4. Examples of linguistic analyses

Figure 4.30: Two elliptic DP coordinations: peripheral sharing (left) and gapping (right).

Figure 4.31: PP gapping.

Example 4.40. Figure 4.30 shows two elliptic DP coordinations. In the peripheral sharing on the left, the phrase “tigers” is shared between the two conjuncts. In the gapping coordination on the right, a filler for the determiner “many” in the first conjunct functions as the head of the second conjunct. An example of PP gapping is shown in Figure 4.31.

Remark 4.41. The gapping mechanisms presented in section 2.5 place very few restrictions on what can be elided in a gapping coordination. The only hard-coded restriction is that the head of the second conjunct is obligatorily elided, corresponding to the Finite-First Condition in (Hartmann 2000, p. 144). All other restrictions must be encoded probabilistically or by means of hand-written cost functions. For example, we can use cost functions at the gapping filler to control the word order of the gapping dependents, and to restrict the set of possible gapping dependents — for instance in order to encode the Major Constituent Condition proposed in (Hartmann 2000, p. 147). Likewise, we can use cost functions at the gapping dependent in order to ensure the presence of a replacement edge and
compute a cost that quantifies the parallelism between the gapping dependent and the phrase that it replaces — eg, to encode the Maximal Contrast Principle proposed by (Hartmann 2000, p. 166). Cost functions that encode general syntactic constraints (eg, on agreement, word order, obligatory presence or absence, selectional restrictions, island constraints, etc.) naturally also apply to gapping coordinations.

Remark 4.42. It has been argued by many researchers that the path from the governor of the gapping dependent to the gapping filler is not allowed to contain any islands (cf. Hartmann 2000, p. 152). In DG, the gapping mechanism ensures that gapping dependents land on the gapping filler, which means that the nodes on the extraction path from the governor of the gapping dependent to the gapping filler will check whether the extraction violates any island constraints. Thus, the normal island constraints can be used to explain the ungrammaticality of gapping coordinations such as (34), which violates the wh-island condition.

(34) *John asked what to write to Mary and Peter asked what to write to Sue.* (Hartmann 2000, p. 152)

Remark 4.43. Another consequence of our gapping mechanism is that the word order of gapping dependents in secondary conjuncts is determined by word order cost functions associated with the gapping filler. That is, in DG, the word order within the gapped conjunct is determined in a very direct way by the gapping filler, and is not in any sense determined by the underlying word order within some reconstructed unelided version of the gapped conjunct, as in the elliptic analyses of Hartmann (2000) and many others. This means that the word order of the gapped dependents is not necessarily parallel with the word order in the first conjunct. For example, consider the Danish gapping coordination (35), whose corresponding analysis is shown in Figure 4.32; in our judgment, it is grammatical but highly marked. In the first conjunct, the topicalized direct object “Kaffe” (“Coffee”) precedes the indirect object “Mary”, whereas in the second conjunct,

7DG does not prevent grammar writers from writing island constraints that distinguish between gapping dependents and ordinary dependents, if they want to do so. For example, to account for examples like Figure 4.32, it might be reasonable to assume that in gapping coordinations, the coordinate structure constraint only prevents extraction out of dependents that have been replaced by gapping dependents.

8In DG, all fillers are unordered, so DG analyses do not contain any information about the relative word order of the fillers for elided words.
the word order is reversed, ie, the indirect object precedes the direct object, which is the canonical word order in Danish.

(35) KAFFE vil jeg nu for syttende gang bede jer om at skænke Mary, og <> <skænke> John te
 COFFEE will I now for seventeenth time ask you about to pour Mary, and <> <pour> John tea

‘I will now ask you, for the umpteenth time, to pour coffee to Mary and tea to John.’

The reversal of word order is almost obligatory, as shown by the the sentence (36) which is ungrammatical in our judgment, and identical to (35) except for the order of the direct and indirect object.

(36) * KAFFE vil jeg nu for syttende gang bede jer om at skænke Mary, og TE JOHN.
 COFFEE will I now for seventeenth time ask you about to pour Mary, and TEA JOHN.

The unelided version of the coordination in (36) is fully grammatical, so the ungrammaticality of the elided version of (36) is not caused by the lack of a grammatical unelided reconstruction of the gapped conjunct. This could be interpreted as weak evidence against the elliptic analysis of gapping coordinations. The ungrammaticality of (36) and the grammaticality of (35) follows if we assume that the gapping filler (which functions as the landing site of the gapping dependents) controls the word order, and stipulates that the gapping dependents must follow the canonical word order, ie, that the indirect object should precede the direct object.
4.5. Anaphora: discourse structure

Example 4.44. An example may involve both gapping and sharing simultaneously, as shown by (37) below, where the verb “verlegt” (“lays”) has been gapped from the second conjunct, and the noun phrase “den Putz” (“the plaster”) has been shared between the two conjuncts. The corresponding DG analysis is shown in Figure 4.33.

(37) Karl verlegt die Rohre über und Peter die Kabel unter den Putz.
Karl lays the tubes above and Peter the cables beneath the plaster.

In this section, we have shown how simple fillers and gapping fillers can be used to account for elliptic coordinations — including peripheral sharing, subject sharing, and gapping — and how the mechanisms for peripheral sharing and gapping interact with independently motivated cost functions, such as island constraints and word order constraints.

4.5 Anaphora: discourse structure

Summary. We argue that discourse structure can be viewed as a dependency structure for the words within an entire discourse, augmented with anaphoric edges that indicate the antecedents for each anaphor. We discuss the relationship between our proposal and the literature on discourse structure.\(^9\)

\(^9\)This section incorporates insights proposed by my colleagues Daniel Hardt, Bjarne Ørsnes, Peter Juel Henrichsen, Peter Rossen Skadhauge, and Hans Dybkjaer during our discussions in the discourse reading group at the Copenhagen Business School.
Historically, syntax has mainly been concerned with the linguistic relations that hold within sentences. However, in the last few years, linguists have become increasingly interested in discourse phenomena, i.e., linguistic relations that hold across sentences. Prominent examples include work based on Rhetorical Structure Theory (Mann and Thompson 1988) such as the English RST treebank (Carlson and Marcu 2001; Carlson et al. 2003) and RST-based work on discourse parsing and summarization (Marcu 2000); work on Segmented Discourse Representation Theory (Asher forthcoming; Lascarides and Asher in press; Baldridge and Lascarides 2005); work on the Linguistic Discourse Model (Polanyi 2003; Polanyi et al. 2003, 2004); and work on the Penn Discourse Treebank (Webber et al. 2003; Webber 2004). In this section, we will sketch how Discontinuous Grammar can be extended to a theory of discourse by viewing discourse structure as a dependency structure augmented with anaphoric edges.

There are basically two ways of accounting for discourse structure. The first approach is to assume two separate levels of analysis, a discourse structure connecting discourse segments and a syntactic structure describing the internal structure within each discourse segment, with some kind of interface linking the two levels. This is essentially the approach taken by the English RST treebank (Carlson et al. 2003), the Penn Discourse Treebank (Webber 2004), and the Linguistic Discourse Model (Polanyi et al. 2003). The second approach, as noted by Webber (2004, p. 755), is to treat discourse relations as lexically anchored dependencies within the syntax — i.e., to assume that all words in the discourse are linked into one large dependency structure, using the same mechanisms as in the analysis of intersentential structure. This is not the solution Webber adopts, but it has the obvious advantage that it gives an integrated account of syntax and discourse, thereby avoiding what we view as the central weakness in the two-level approach: the difficulty of drawing a natural boundary between syntax and discourse.

Example 4.45. Carlson and Marcu (2001, p. 2) have pointed out how difficult it is to give a theoretically satisfactory definition of the notion of elementary discourse unit because the “boundary between discourse and

[10] Webber writes: “Such a radical step would not be impossible. However, we have not thought through its many consequences in detail, given that one would not want to lose the generalizations that have been captured over many years of work in lexicalized sentence-level grammars.” (Webber 2004, p. 755)
syntax can be very blurry”. They illustrate this claim with the examples (38a)–(38d) below (adapted from Carlson and Marcu 2001, p. 2).

(38)
a. Xerox’s income grew 6.2%. This earned mixed reviews.
b. Xerox’s income grew 6.2%, which earned mixed reviews.
c. Xerox’s income grew 6.2%, earning mixed reviews.
d. The 6.2% growth of Xerox earned mixed reviews.

Carlson and Marcu note that although (38a)–(38d) are nearly identical with respect to the information they convey, the relation between the two events is expressed by a discourse relation in (38a) and by a syntactic relation in (38d), whereas it seems to be a matter of taste how to classify the relations in (38b) and (38c). In their segmentation scheme, they have decided to segment (38a)–(38c) into two elementary discourse units, and (38d) into only one elementary discourse unit, but they view this as a somewhat arbitrary decision motivated by practical rather than theoretical concerns.

Example 4.46. Dependency roles can be satisfied by phrases that span several sentences. For example, in (39) below, the phrase “I am tired. Go home” acts as the quotational object of the verb “said”.

(39) He said “I am tired. Go home,” in a sleepy voice.

The construction has a high frequency in Danish: 50% of the 297 quotational objects in the Danish Dependency Treebank with quotation marks span more than one sentence. The quotation marks are by no means obligatory, and the Danish Dependency Treebank contains many examples of the constructions shown in (40) and (41).

(40) I am tired, he said in a sleepy voice. Go home.

(41) I am tired. Go home, he said in a sleepy voice.

This phenomenon has also been observed by Webber (2004, p. 766), who notes that in (42), the sentential complement of the verb “believed” is an entire discourse which includes the second sentence “Rather, it arose...”.

(42) Epigenesists believed that the organism was not yet formed in the fertilized egg. Rather, it arose as a consequence of profound changes in shape and form during the course of embryogenesis.
Examples 4.45 and 4.46 show that arbitrarily complex spans of discourse can function as syntactic units, and that it is in general difficult to maintain a theoretically satisfying distinction between syntactic units and discourse units. In our view, the most natural explanation is that there is no fundamental difference between discourse units and syntactic units, and that it is a historical coincidence that we refer to small units as syntactic units, and to larger units as discourse units. We will therefore assume that a discourse structure is just a syntax graph that spans an entire discourse — i.e., in our setting, it is a DG graph that consists of a deep tree that encodes dependencies and a surface tree that encodes word order, augmented by secondary edges that encode filler sources and antecedents for anaphora.

Example 4.47. Figure 4.34 shows a possible dependency analysis of (39). The quotation “I am tired. Go home” is analyzed as a qobj (quotational object) of “said”. The phrase “Go home” is analyzed as a res (result) adjunct of “I am tired”, thereby indicating that the speaker urges the hearer to go home because the speaker is tired (cf. Asher 1999; Baldridge and Lascarides 2005). The qobj dependency is licensed by a complement frame associated with the lexeme for “said”, and the res dependency is licensed by an adjunct frame associated with the lexeme “Go”. The functors and modifiers associated with these complement and adjunct frames specify how the semantic representation for the combined phrases are computed.

The dependency structure is maintained in the analysis of (40) shown in Figure 4.35, but the change in word order means that the res dependency becomes discontinuous. The landing site for “Go home” is indicated by means of the xland edge.

Example 4.48. Figure 4.36 shows a dependency analysis of a small discourse taken from Asher (forthcoming, p. 6), using the SDRT discourse re-
4.5. Anaphora: discourse structure

I am tired, he said in a sleepy voice. Go home.

Figure 4.35: Discontinuous dependency analysis of the discourse (40).

Guy experienced a lovely evening last night. He had a fantastic meal. He ate salmon. He devoured lots of cheese. He won a dancing competition.

Figure 4.36: Dependency analysis of a small discourse.

lation names proposed by Baldridge and Lascarides (2005). The discourse dependencies are indicated with dashed arrows. In SDRT, an elab (elaboration) relation indicates that the adjunct elaborates on some aspect of the governor, and a narr (narration) relation indicates that the adjunct event occurs after the governor event. Thus, the analysis shows that “He ate salmon. He devoured lots of cheese” is an elaboration of “He had a fantastic meal”, and that the event described by “He devoured lots of cheese” occurs after the event described by “He ate salmon”.
Remark 4.49. In the RST annotation scheme proposed by Carlson and Marcu (2001), the notions of “nucleus” and “satellite” closely correspond to the notions of “governor” and “dependent” in dependency theory. This means that RST can largely be viewed as a dependency-based theory. There are some slight incompatibilities, though. For example, RST allows multi-nuclear relations, i.e., relations involving two or more heads. But these are not completely symmetric from a dependency theoretic point of view—e.g., in coordinations, the first conjunct has different extraction properties compared with secondary conjuncts, and many of the other multi-nuclear relations in RST connect a sentence with an adverbial clause, which would be analyzed as a dependent in most dependency theories.

Remark 4.50. Is discourse structure a tree structure or a general graph structure? This is perhaps one of the most hotly debated issues in the theory of discourse. Wolf and Gibson (2003) argue that tree structures are a poor representation of discourse structure, but Marcu (2003) defends the use of tree structures, arguing that many of the additional edges proposed by Wolf and Gibson are not discourse edges, but coreference edges.

Most other discourse frameworks have used a tree-based representation as well. For example, Mann and Thompson (1988) require discourse units to be organized in a hierarchical tree structure, although they merely view the tree structure as a convenient methodology for analyzing texts, without any psychological validity. Tree structures are also used to model discourse in the Linguistic Discourse Model (Polanyi 2003), where the discourse structure is licensed by a Context-Free Grammar, and in the English Discourse Treebank (Webber et al. 2003), where the discourse structure is licensed by a Tree-Adjoining Grammar.11 Within Segmented Discourse Representation Theory, Asher (forthcoming) has argued that there are certain phenomena where a tree structure fails to capture all relevant relations, but

11 Webber et al. (2003, p. 546) write that they “are not committed to trees as the limiting case of discourse structure”. In particular, they assume that the discourse (1) below is a multi-parent structure where (a) and (b) stand in a succession relation to each other, whereas (b) and (c) stand in a manner relation to each other.

(1) (a) The first to do that were the German jewellers. (b) And Morris followed very quickly after, (c) using a lacquetry technique to make the brooch.

However, we disagree with this analysis, and note that if (c) is analyzed as a manner adverbial of (b), then we get a tree structure if the discourse unit (b)+(c) is analyzed as a succession
Baldridge and Lascarides (2005) have argued that SDRT discourse structure can be viewed as a tree structure augmented by secondary relations.

From our point of view, the discourse tree proposed within these theories corresponds to the dependency tree within our DG analysis — ie, a DG analysis consists of a discourse tree as proposed in these theories, augmented by a surface tree and anaphoric links. Consequently, apart from the elimination of a separate level of discourse, our DG analysis is by no means a radical departure from existing theories of discourse.

Remark 4.51. Asher (forthcoming) convincingly argues that discourse structure is primarily determined by semantics, and that cue words and sentence-internal syntax only play a minor role. This view, which we fully support, is by no means incompatible with a dependency-based view of discourse: dependencies encode semantics as much as syntax, and given a modifier scope, the functors and modifiers within the complement and adjunct frames associated with lexemes in the dependency tree uniquely determine the compositional semantics of all phrases in the graph.

Current theories of semantics are far more fragmentary than current theories of syntax, and in particular, their coverage is not large enough to provide detailed semantic analyses for all the sentences in an arbitrary text. For this reason, DG is not committed to a particular semantic theory, but simply provides an interface to semantics by allowing the semantic component (whatever it is) to contribute to the total cost of an analysis. From this perspective, Asher has argued that in discourse relations, the semantic cost contribution is more important than the syntactic cost contribution. Discourse relations are not unique in this respect, since many other adjunct relations — in particular the relations associated with adverbial expressions of time, place, manner, cause, etc. — are also more semantic than syntactic in nature.

Example 4.52. Webber et al. (2003) convincingly argue that anaphora are involved in the interpretation of discourse adverbials such as “then”, “in-
Chapter 4. Examples of linguistic analyses

If the light is red, stop. Otherwise go straight on.

Figure 4.37: DG analysis of the discourse adverbial “otherwise”.

stead”, “otherwise”, “therefore”, etc. — ie, discourse adverbials take two arguments where one argument is provided by the governor of the discourse adverbial, and the other argument is resolved anaphorically. In their analysis, an anaphor has an antecedent which determines the interpretation of the anaphor as being either coreferential to the antecedent, or to some discourse referent that can be inferred from the antecedent by means of a relation provided by either the antecedent, the anaphor, or both (eg, a part-whole relation, a generic relation, etc.).

We will adopt this analysis in DG, ie, we will assume that discourse adverbials are anaphora acting as adjuncts, whose antecedents are annotated by means of an ant (antecedent) edge from the antecedent to the anaphor. Figure 4.37 shows the DG analysis of an example taken from Webber et al. (2003, p. 553). The word “go” is analyzed as a contr (contrast) adjunct of “stop”, and the discourse anaphor “otherwise” is analyzed as an adjunct of “go” with the antecedent phrase “the light is red”.

In sentences such as “Sue lifted the receiver as Tom darted to the other phone”, Webber et al. (2003, p. 555) analyze the word “other” as an anaphor with antecedent “the receiver” which refers to a discourse referent that can be inferred by means of the part-whole relation (receiver-phone) provided by the antecedent and the relation provided by the anaphor “other” (ie, being a phone in the context that is not identical to the inferred phone). However, Webber et al. do not maintain this analysis in their analysis of the construction “on the one hand ... on the other hand”. Instead of analyzing “other” as a discourse adverbial, they analyze “on the one hand X, on the other hand Y” as an idiomatic expression that takes two complements X and Y. This analysis is incompatible with the standard syntactic analysis of the phrases “on the one hand” and “on the other hand” as adjuncts that can be very far apart in the dependency structure.
Figure 4.38: DG analysis of the construction “on the one hand ... on the
other hand”.

In the DG analysis of (43) shown in Figure 4.38, we will therefore as-
sume that “other” acts as a discourse adverbial with antecedent phrase
“(He) be a very kind person” (the attachment point of “on the one hand”),
ie, the phrase “on the other hand” can be paraphrased as “arguing against
his being a very kind person”.

(43) He is said to be, on the one hand, a very kind person. On the other
hand, he has been convicted of serious crimes.

The phrase “on the one hand” is optional. It constrains where the an-
tecedent for “on the other hand” is situated, and cannot be used without a
discourse adverbial like “on the other hand” which signals contrast.

To understand how discourse adverbials are handled in DG, we need to
look briefly at the mechanisms for anaphora in DG, even though anaphora
are outside the scope of this dissertation.

Remark 4.53. We will assume that the antecedent edges connecting an
anaphor with its antecedents are licensed by anaphor frames associated
with the anaphoric lexeme. Given an antecedent edge, the shortest path
Chapter 4. Examples of linguistic analyses

If the light is red, stop. Otherwise go straight on.

![Diagram](https://via.placeholder.com/150)

Figure 4.39: The anaphoric extraction path for the discourse adverbial “otherwise” from Figure 4.37.

within the deep tree from the anaphor to the antecedent is called the anaphoric extraction path for the antecedent edge. To account for structural constraints on antecedents, we must modify the extract operator so that it returns all antecedent edges whose extraction path contains a given node; in this way, nodes on the extraction path can function as islands for anaphoric extraction. Unlike normal extraction paths, which are constrained by the upwards movement principle and therefore only contain upwards edges, anaphoric extraction paths in general consist of a series of upwards edges followed by a series of downwards edges. In Figure 4.39, the anaphoric extraction path for the discourse adverbial “otherwise” in Figure 4.37 is indicated with dotted lines.

With these mechanisms, it is possible to encode the important right frontier constraint (cf. Asher 1993) which states that the antecedent of an anaphor must be located at the right frontier associated with the anaphor, i.e., anaphoric extraction paths are not allowed to contain any downwards discourse edges. As noted by Asher (1993) and Webber et al. (1999), there are exceptions to this rule, but only with some anaphora. Since our extract operator gives access to both the anaphor and its antecedent, it allows an island to be sensitive to the properties of both the anaphor and the antecedent, i.e., our island mechanism may well be powerful enough to account for both the right frontier constraint and its exceptions.

Example 4.54. In Example 4.52, we saw that the adjunct “on the one hand” is ungrammatical in the absence of a contrastive discourse adverbial like “on the other hand”. In our DG analysis, we will assume that “on the one hand” can attach itself as an adjunct of any verbal governor, and that it is equipped with a cost function that triggers a cost if the verbal governor is not a downwards node on the anaphoric extraction path of some
4.5. Anaphora: discourse structure

Well, now you take a bolt, an orange one with a slit, yes, and you put it through there from above so that the three get fixed then.

Figure 4.40: Analysis of spoken language dialog.

contrastive discourse adverbial such as “on the other hand”. During incremental processing, the parser will try to minimize the total cost of the graph, ie, it will try to eliminate the cost imposed by “on the one hand” by finding an antecedent for “on the other hand” that has the verbal governor of “on the one hand” on its anaphoric extraction path. In this way, “on the one hand” can be used to constrain the possible antecedents for discourse adverbials such as “on the other hand”.

Remark 4.55. The purpose of the discourse structure is to determine the compositional semantics of the entire discourse. In many cases, two different discourse structures may well lead to the same compositional semantics, ie, there may be several correct analyses of a discourse: if two discourse analyses have the same (or nearly the same) semantic interpretation, the choice between them is of little relevance to speakers, and both analyses can be considered correct.

Remark 4.56. So far, we have focused on the analysis of written language, but it is also important to consider spoken language, in particular spoken dialogue with interactions and overlaps between the speakers. Figure 4.40 shows a dependency analysis of a dialogue from the Switchboard corpus. The dialogue is interesting because the speakers interact (and overlap, although this cannot be shown directly in the graph). For example, speaker B
Figure 4.41: Dependency analysis of a speech repair taken from Meteer et al. (1995, p. 23).

Figure 4.41 shows a dependency analysis of speech repairs, another important phenomenon in spoken language (cf. Meteer et al. 1995; Sampson 1998). In our analysis, which builds on the ideas presented in (Meteer et al. 1995), the speech repair consists of a governor having one or more reparandum adjuncts with edge type rep containing the repaired material, an optional editing adjunct (or interregnum) with edge type edit that signals the presence of a speech repair, and one or more repair dependents containing the material that replaces the reparandum. The relationship between reparandum and repair is indicated by means of a repl (replacement) edge from the reparandum dependent to the corresponding repair dependent. In the compositional semantics, the reparandum phrases are ignored, although material within the reparandum can function as antecedents for pronouns outside the reparandum.

In this section, we have argued that discourse structure is a dependency tree augmented with a surface tree and a set of anaphoric links, ie, the dependency analysis for an entire discourse is created by linking the dependency analyses of individual sentences by means of a set of discourse dependencies. The dependency tree determines the functor-argument tree and hence the compositional semantics for the entire discourse, ie, how
the semantic interpretations of the individual sentences are combined into a semantic interpretation for the entire discourse. The surface tree controls the word order of the entire discourse. The dependency tree and the surface tree also restrict the possible antecedents for anaphora by means of the right frontier constraint. Thus, all the mechanisms that we need to account for sentence-internal syntax are also needed to account for discourse.

4.6 Periphery: punctuation

Summary. We outline how DG can be used to account for punctuation. After presenting a classification of the different punctuation marks, we describe the principles behind our analysis of punctuation phenomena in DG. We then describe how cost functions can be used to specify where punctuation marks cannot appear and where they must appear; how anaphora and cost functions can be used to control how brackets are matched without any crossing; and how we can account for quote transpositions by assuming that end quotes can be moved under very special circumstances.

There is relatively little work on punctuation within formal linguistics. Punctuation has been investigated from a linguistic perspective by Nunberg (1990) and Jones (1997), and from a psycholinguistic perspective by Hill and Murray (2000). There have also been some practically motivated attempts to deal with punctuation by computational linguists; a survey of these is given by Say and Akman (1997). However, despite these efforts, most syntactic theories have simply ignored the issue of punctuation. This is unfortunate because punctuation is a frequent and highly complicated phenomenon that stretches the descriptive power of any syntax formalism to its limit. In this section, we will describe how DG accounts for punctuation, and why it is a challenging phenomenon. The section incorporates material from Kromann et al. (2003).

Following Nunberg (1990), we use the following terminology to refer to punctuation marks.

Definition 4.57. Commas, dashes, semicolons, colons, and periods are called point marks; paired symmetrical delimiters such as parentheses and quotation marks are called bracket marks; and question marks and exclamation marks are called tone indicators. All of these marks are collectively referred to as punctuation marks.
Chapter 4. Examples of linguistic analyses

Figure 4.42: Examples of the different kinds of marks.

In our theory of punctuation, we classify punctuation marks along two dimensions: how they are placed relative to the preceding and following word, and whether they are paired with another mark.

Definition 4.58. A begin-mark attaches as a clitic to a following word or phrase without any intervening spaces (i.e., as a proclitic). An end-mark attaches as a clitic to a preceding word or phrase without any intervening spaces (i.e., as an enclitic). A separator is surrounded by spaces.

Definition 4.59. A mark is called binary if it is obligatorily paired with another mark, and unary if it is unpaired.

Example 4.60. Examples of the different kinds of marks are given in Figure 4.42. Note that some punctuation marks can be used as more than one kind of mark. For example, in the ASCII character set, the same single quote is used as both begin-mark and end-mark (e.g., “they ‘persuaded’ her”), and a dash can be used as all three kinds of mark; e.g., end-mark in coordinations in Danish such as “han- og hunkøn” (“masculine and feminine gender”), begin-mark in coordinations in Danish such as “jernaldermand og -kvinde” (“iron age man and woman”), and separator in parentheticals such as “Bohr — a famous physicist — was born in Copenhagen”.

Remark 4.61. Within a dependency framework, punctuation marks are most naturally viewed as independent lexemes that can attach to other lexemes as either complements or adjuncts. In the complement analysis, punctuation marks must be encoded in all complement frames — an awkward move if we want to use the same grammar for both spoken and written language, make the grammar robust against errors of punctuation, and avoid redundancy in the grammar. For these reasons, we will assume that punctuation marks attach themselves as adjuncts to other words, and that they cannot take any words as their complements or adjuncts.

Remark 4.62. In our linguistic analysis, we will assume that a begin-mark always precedes its adjunct governor, that an end-mark always succeeds
its governor, and that a separator can either precede or succeed its governor. Except for ending quotation marks in quote transpositions (cf. Remark 4.77), we will assume that marks can never be extracted, i.e., the governor and landing site of a mark must always coincide.

With these assumptions, we can find the adjunct governor associated with a given mark by looking at all possible landing sites in the direction associated with the mark (left for end-marks, right for begin-marks, and both directions for separators), and determine which one of the possible landing sites functions as the adjunct governor of the mark; anything else being equal, we will prefer the highest attachment point. We will assume that binary marks are always attached to the lowest governor that dominates all words between the begin- and end-mark, which makes binary marks even more constrained than unary marks.

Example 4.63. The comma in Figure 4.43 is an end-mark, so it must attach to a possible landing site on the left (i.e., one of the words “run”, “would”, or “that”). The comma rules for Danish mandate a comma (or a higher mark) at the end of a verb phrase with an overt subject, so the natural adjunct governor for the comma is the finite verb “would”. The period is an end-marker which must be attached to a landing site on the left, i.e., one of the words “not” or “knew”. Since the Danish punctuation rules stipulate that periods mark the end of a sentence, the word “knew” is the most natural choice of governor.

Example 4.64. In the analysis of (44) shown in Figure 4.44, the two first quotation marks enclose the partial phrase “Are you,” whose lowest governor is “Are”, so the two first quotation marks are analyzed as adjuncts of “Are”. Similarly, the two last quotation marks are also analyzed as adjuncts
Chapter 4. Examples of linguistic analyses

"Are you," he said, "entirely ok now?"

So far, we have introduced a set of general principles that guide our dependency analysis of punctuation. We will now address the question of how to formulate rules that can be used to account for the punctuation marks used in languages like Danish or English.

Remark 4.65. In our rule-based analysis of punctuation, we will assume that punctuation is controlled by means of six different kinds of rules: (i) adjunct rules that specify where a punctuation mark can attach itself as an adjunct; (ii) realization rules that impose a cost if an obligatory punctuation mark fails to be realized; (iii) word order rules that impose a cost if a punctuation mark is placed incorrectly in the linear order; (iv) adjacency rules that impose a cost on illegal sequences of punctuation marks; (v) bracket rules that impose a cost for unmatched bracket marks; and (vi) movement rules that impose a cost on illegal movements of a punctuation mark. Since all of these rules are tied to specific types in the inheritance hierarchy, different lexemes can have slightly different sets of punctuation rules. The rules will be described in more detail in the following remarks.

Remark 4.66 (adjunct rules). Each punctuation lexeme is equipped with a set of adjunct frames that allow the punctuation lexeme to attach itself as an adjunct to other nodes. Adjunct frames only specify where a punc-
4.6. Periphery: punctuation

<table>
<thead>
<tr>
<th>Punctuation mark</th>
<th>Adjunct governor</th>
<th>Adjunct edge type</th>
</tr>
</thead>
<tbody>
<tr>
<td>. ? ! ;</td>
<td>head of main sentence</td>
<td>pnct</td>
</tr>
<tr>
<td>:</td>
<td>governor of xpl or qobj phrase</td>
<td>pnct</td>
</tr>
<tr>
<td>,</td>
<td>finite verb with overt subject</td>
<td>pnct</td>
</tr>
<tr>
<td>; ;</td>
<td>head of first conjunct</td>
<td>pnct</td>
</tr>
<tr>
<td>,</td>
<td>head of topicalized phrase</td>
<td>pnct</td>
</tr>
<tr>
<td>, –</td>
<td>head / governor of parenthetical phrase</td>
<td>pnct</td>
</tr>
<tr>
<td>()</td>
<td>head of parenthetical adjunct</td>
<td>pnct</td>
</tr>
<tr>
<td>"" ,, ""</td>
<td>any</td>
<td>pnct</td>
</tr>
</tbody>
</table>

Figure 4.45: The most important adjunct rules governing punctuation.

Punctuation lexeme can appear — they do not ensure that the punctuation adjunct is obligatory or prevent multiple punctuation adjuncts (e.g., two adjacent commas) from attaching themselves to the same adjunct governor; this must be achieved by means of realization rules and adjacency rules.

Example 4.67. Figure 4.45 shows a set of adjunct frames that license the most frequent kinds of punctuation in Danish and English. Following the practice in the Danish Dependency Treebank, the same edge type `pnct` has been used in all the adjunct frames, although nothing in DG prevents us from using different edge types for different kinds of punctuation.

Example 4.68. Figure 4.46 shows an analysis of (45) using the adjunct rules in Figure 4.45. The punctuation mark and the begin and end quotes attach to the head of the quoted sentence “Are you ok”, and the period attaches to the head of the main sentence.

(45) “Are you ok?” he asked the boy who fell.

Definition 4.69. The *punctuation periphery* at a position *p* in a phrase with head *h* is defined recursively as the set of all punctuation marks that are either adjacent to *p*, or adjacent to some punctuation mark in the punctuation periphery of *h* at *p*. The *inner punctuation periphery* of *h* at *p* is defined as the set of all punctuation marks in the punctuation periphery of *h* at *p* that are deeply dominated by *h*, and the *outer punctuation periphery* is defined as the set of all punctuation marks in the punctuation periphery that are not in the inside punctuation periphery.
Remark 4.70 (realization rules). Adjunct rules specify where a punctuation mark can attach to a given governor, but they do not specify that a punctuation mark must attach. To specify that some punctuation mark is obligatory at a given position in a given phrase, the head lexeme must therefore be equipped with a cost function that checks whether the required punctuation mark is realized there and produces a cost if it is not.

Realization rules are complicated by the fact that several heads can share the same punctuation mark, i.e., the same punctuation mark can satisfy the realization requirements of different heads. For example, in (46) whose analysis is shown in Figure 4.47, Danish punctuation rules require a comma (or a more prominent mark) at the end of the phrases headed by “was” and “is” because they are finite verbs with an overt subject. This requirement is satisfied by the second dash, which is not an adjunct of either “was” or “is”, but which is nevertheless contained in the right punctuation periphery of both phrases (cf. Definition 2.73).

(46) Because he was sick — as he often is — he could not come.

In general, a requirement for a comma at the end of a phrase can be satisfied by any comma, dash, semicolon, colon, period, question mark, or exclamation mark at the right punctuation periphery of the phrase, or by

12Nunberg (1990) refers to this phenomenon as point absorption and bracket absorption, since he adopts a transformational view where the observed punctuation is generated from a base representation where each phrase contains all the punctuation marks that it requires. A set of absorption rules then specify how punctuation marks with high rank can absorb adjacent punctuation marks with identical or lower rank, according to a hierarchy where commas have lowest rank, and periods highest rank. His insights are retained in our analysis, but from a non-transformational point of view (sharing) rather than a transformational point of view (absorption).
4.6. Periphery: punctuation

Because he was sick − as he often is − he could not come .

Figure 4.47: Analysis of example where marks must be shared.

<table>
<thead>
<tr>
<th>Unary mark</th>
<th>,</th>
<th>−</th>
<th>;</th>
<th>:</th>
<th>?</th>
<th>!</th>
</tr>
</thead>
<tbody>
<tr>
<td>Unary substitutes</td>
<td>,</td>
<td>−</td>
<td>;</td>
<td>:</td>
<td>?</td>
<td>!</td>
</tr>
</tbody>
</table>

Figure 4.48: Possible substitutes for the unary punctuation marks.

any end-bracket which is either a local adjunct or located in the outer right punctuation periphery — ie, an end-bracket in the inner punctuation periphery cannot meet the requirement (Nunberg refers to the substitution with a unary mark as point absorption, and to the substitution with a binary mark as bracket absorption). Requirements for other unary marks can be substituted as well. Figure 4.48 shows the possible substitutes for each unary mark. As with commas, binary substitutes are only valid if they are local adjuncts or located within the outside punctuation periphery.

For these reasons, realization rules must be sensitive not only to punctuation marks that have attached themselves to the head as adjuncts, but also to punctuation marks at the inside and outside punctuation periphery of the phrase, which can be retrieved with the leftp and rightp operators (cf. Definition 2.73).

The realization rules for Danish and English punctuation are complicated, and specifying them in detail would lead us too far. Indeed, rather than specifying the cost functions for punctuation manually, we believe it is better to account for punctuation by means of a probabilistic language model, as proposed in section 6.2. The following examples are therefore only intended as illustrations of how the leftp and rightp operators can be used to formulate realization rules — they are not meant as complete, detailed proposals in their own right.
Chapter 4. Examples of linguistic analyses

Example 4.71. The cost function below can be used to stipulate that a head must have an obligatory comma (or a valid substitute) at its right punctuation periphery. The cost function checks whether there is a valid unary substitute in the right punctuation periphery of the head (identified by the cost function $\text{rightp}(\text{this}, [\text{pnct} \leftarrow \text{any}], [\text{pnct} \leftarrow \text{any}])$), or a valid binary substitute at the head or in its outside right punctuation periphery (identified by the cost function $\text{rightp}(\text{this}, [\text{pnct} \leftarrow \text{this}], [\text{pnct} \leftarrow \text{any}])$), assuming the type hierarchy for punctuation marks given in Figure 4.49. If no such punctuation mark exists, the cost 100 is returned.

$$100 \times \text{not}(\text{rightp}(\text{this}, [\text{pnct} \leftarrow \text{any}], [\text{pnct} \leftarrow \text{any}]) + \text{unarymark})$$

$$\mid (\text{rightp}(\text{this}, [\text{pnct} \leftarrow \text{this}], [\text{pnct} \leftarrow \text{any}]) + \text{endbracket}))$$

At the node “was” in Figure 4.47, the operator $\text{rightp}(\text{this}, [\text{pnct} \leftarrow \text{any}], [\text{pnct} \leftarrow \text{any}])$ will return the node corresponding to the second dash, which matches the type specification unarymark; after negation, the cost function will therefore return the cost 0, indicating that the cost function is not violated. If the second dash had been deleted, the two rightp operators would return the empty set, thereby returning the cost 100 after negation and multiplication.

Example 4.72. The cost function below can be used at the head of a first conjunct to ensure that each secondary conjunct in the coordination is preceded by a comma or a valid substitute if it lacks a coordinator.

$$100 \times (([\text{conj} \leftarrow \text{this}] - [\text{coord} \leftarrow \text{any}])$$

$$+ \text{where}(n, \text{not}(\text{leftp}(\text{var}(n), [\text{pnct} \leftarrow \text{any}], [\text{pnct} \leftarrow \text{any}]) + \text{unarymark})))$$

Note that this cost function is also satisfied in (47)–(49) below, where the conjuncts are separated by periods and question marks, respectively. But it rules out examples like (50).

(47) They saw many animals. A cow. A horse. A mule. And a rabbit.
4.6. Periphery: punctuation

(48) They saw a cow and a horse. And a rabbit.

(49) What did they see: A cow? A horse? A mule? Or a rabbit?

(50) *What did they see: A cow a horse a mule or a rabbit?

The cost function below can be used to ensure that the same unary mark is used to separate all the conjuncts in the coordination. The cost function identifies a conjunct C_1 that precedes another conjunct C_2, and computes the first unary mark preceding each conjunct within the outside left punctuation periphery of the conjunct; if the marks are non-identical, then the cost function returns the cost 100 for each non-matching pair of marks.

$$
100 \times (\text{var}(C_1, [\text{conj} this]) + \text{var}(C_2, [\text{conj} this] + [> C_1])
+ (\text{val}(\text{lexeme}, \text{prev}(\text{leftp}(C_1, any, [\text{punct} any]), C_1)))
\neq \text{val}(\text{lexeme}, \text{prev}(\text{leftp}(C_2, any, [\text{punct} any]), C_2)))
$$

This cost function will prevent examples like (51).

(51) *They saw a cow, a horse; a mule. And a rabbit.

Remark 4.73 (word order rules). Adjunct rules specify which governors a punctuation adjunct may attach to, and realization rules specify which punctuation marks must obligatorily be present at a head. However, these rules cannot prevent punctuation marks from occurring in the wrong position within the phrase that they attach — eg, they cannot prevent a period from preceding its landing site in the linear order. For this purpose, we need a set of word order rules which specify where punctuation marks cannot occur within the linear word order. This is achieved by means of cost functions that impose a cost for every word order violation they detect, as illustrated by the following example.

Example 4.74. The word order rules for periods are rather complicated. For example, (52) and (54) show that periods can be inserted before sentence adverbials, but (53) shows that they cannot be inserted before direct objects. The periods in (52) and (54) correspond to particular pause and intonation patterns in spoken language, which probably indicate either emphasis or some kind of afterthought.

(52) Please leave this room. Instantly.

(53) *Please leave. This room. Instantly.

(54) She presented the poem. To a group of critics. Yesterday.
The situation becomes even more complicated if we analyze discourse relations as dependency relations, as we have argued for in section 4.5. For then the surface phrase associated with the head of a sentence includes all discourse segments that have been attached to the head of the phrase, not just the sentential parts, so instead of saying that a period must be placed at the end of a sentence, we must say that a period must be placed after all landed nodes that have been analyzed as syntactic dependents, but before all landed nodes that have been analyzed as discourse dependents. For example, in (55) (analyzed in Figure 4.36 on page 165), the period in the first sentence must be placed before the direct object “a fantastic meal”, but before the two discourse units “He ate salmon. He devoured lots of cheese.” and “He won a dancing competition”.

(55) He had a fantastic meal. He ate salmon. He devoured lots of cheese. He won a dancing competition.

As a tentative generalization from these examples, we propose that periods are subject to the following word order rules: (a) periods must always succeed their governors; (b) periods can only appear immediately before a discourse adjunct or (with the purpose of indicating emphasis or afterthought) a dependent of a verb whose head is adverbial or prepositional. The first rule can be encoded by means of the cost function below, which imposes a cost of 100 every time a period precedes its governor.

\[100 \times ([\text{punct this}] + \text{period} + [< \text{this}]) \]

The second rule can be encoded by means of the cost function below, which imposes a cost of 100 every time the landed node immediately after a period fails to be a discourse adjunct (we will assume that all discourse edge types are subtypes of the edge type discourse) or a dependent of a verb whose head is adverbial or prepositional.

\[100 \times (\text{next([-land this], [-punct this]} + \text{period}) – (\text{adverbial|preposition})) \]

Remark 4.75 (adjacency rules). Word order rules prevent bad orderings of punctuation marks locally at a landing site, but cannot weed out ungrammatical sequences of punctuation marks. For example, (56) contains the ungrammatical punctuation sequence “—,” which cannot violate any word order rules because the three punctuation marks are attached to different nodes, and hence appear within different word order domains, as shown in Figure 4.50.
4.6. Periphery: punctuation

Figure 4.50: Example of ungrammatical punctuation.

(56) *I like tiramisu — but I avoid pasta, if I can, — .

To avoid such sequences, we need a set of cost functions that impose a cost whenever an invalid sequence is encountered. For example, the following cost function will impose a cost of $100n$ if the unary punctuation mark is immediately followed by a sequence of n unary punctuation marks.

$$100 \times \text{rightp}(\text{this, -any, } [\text{pnct any}] + \text{unary})$$

Remark 4.76 (bracket rules). We also need a set of bracket rules that impose a cost if binary punctuation marks fail to be paired with a matching punctuation mark. To account for this matching condition, we will make the following assumptions: (a) begin brackets are lexically encoded as anaphora whose antecedent must be an end bracket of the same kind — ie, ‘(’ must be matched by ‘)’, and similarly with quotation marks (cf. Remark 4.53); (b) cost functions at the begin bracket ensure that the begin bracket must have an antecedent that succeeds the begin bracket and has the same landing site as the begin bracket; (c) a cost function associated with the end bracket ensures that the end bracket must function as an antecedent for exactly one begin bracket; and (d) a cost function associated with begin brackets prevents crossing brackets, ie, if a begin bracket B_1 occurs between two matching brackets A_1 and A_2, then the matching end bracket B_2 for B_1 must occur between A_1 and A_2 as well.

Condition (a) is encoded in anaphor frames, and the encoding of conditions (b) and (c) using cost functions is straight-forward. The cost function below can be used to encode condition (d) at a begin bracket. The leftp operator returns all nodes that are contained within the two matching brackets; for each begin bracket among these, the cost function then imposes a cost if the matching end bracket occurs after the end bracket of the active node.

$$100 \times ([\text{match leftp}([\text{match this}, -\text{any, any-\text{this}}] + \text{beginbracket}] + [>) [\text{match this}])]$$
Chapter 4. Examples of linguistic analyses

He told us that "we should not apologize."

Remark 4.77 (movement rules). Punctuation marks are assumed to be non-extractable (ie, a punctuation mark must land on its governor), with a single exception: quote transposition (cf. Nunberg 1990, p. 64), which is the convention that if an end quote is immediately followed by a period or a comma, then the end quote must be moved to a position right after this mark. We can account for this phenomenon in DG by assuming that the end quote is moved upwards to a position where it can succeed the comma or period, as illustrated by Figure 4.51.

This analysis can be formalized as follows: (a) all words must be equipped with a cost function that blocks the extraction of any punctuation mark other than an end quote; (b) end quotes must be equipped with a cost function that ensures the correct placement of the end quote, ie, any nodes between the end quote and the surface phrase it modifies must be either commas, periods, or other end quotes. The condition (a) can be expressed by means of the cost function below, which punishes any extracted punctuation mark that fails to be an end quote.

100 * extract(punctuation − endquote)

The condition (b) can be expressed by means of the cost function below. The rightp operator finds all nodes that succeed the right boundary of the

13The “Frequently Asked Questions” file of alt.english.usage provides the following historical explanation of quote transposition: “According to William F. Phillips (wfp@world.std.com), in the days when printing used raised bits of metal, ‘.’ and ‘,’ were the most delicate, and were in danger of damage (the face of the piece of type might break off from the body, or be bent or dented from above) if they had a ”’” on one side and a blank space on the other. Hence the convention arose of always using ‘.”’ and ‘,”’ rather than ‘.”’ and ‘,”’, regardless of logic.”
governor of the end bracket while preceding the end bracket. The remaining part of the cost function imposes a cost of 100 for every such node that fails to be either a comma, a period, or an end bracket.

$$100 \times \text{rightp}([\text{pnct}, \text{this}], -\text{any}, [< \text{this}]) - (\text{period} | \text{comma} | \text{endbracket})$$

In this section, we have argued that punctuation is a challenging linguistic phenomenon which should be addressed by any syntactic theory. We have also sketched how cost functions can be used to give a rule-based account of punctuation. In section 6.2, we will present an alternative probabilistic account of punctuation.

4.7 Lexical transformations: morphology

Summary. We outline how DG can be used to account for morphology. After explaining why lexical transformations are needed to account for morphology, we show how lexical transformations can be used to encode inflectional and derivational morphology in the DG lexicon, as well as lexical alternations such as expletives and passives.

So far, we have seen how dependency analyses can be used to account for syntax and discourse. Can dependency analyses also be applied to morphology, ie, can we use a single dependency tree for all levels of linguistic analysis from morphology to discourse? In this section, we will argue that this extension is possible, but that there are some morphological phenomena where we need an additional mechanism: lexical transformations.

Remark 4.78. Many morphological phenomena are concatenative, ie, complex morphological units are formed by concatenating simpler morphological units, as in compounds (cf. Fabb 1998). For example, the Danish compound “haglskadeforsikringsselskabet” in (57), which is an authentic example from the Danish Dependency Treebank, can be analyzed as a concatenation of words and morphemes; the equal signs are used to separate morphemes within a single word.

(57) \(\text{hagl}= \text{skade}= \text{forsikr}= \text{ing=} s= \text{selskab}= \text{et} \)
\(\text{hail} \quad \text{damage} \quad \text{insurance} \quad \text{company} \quad \text{the} \)
\(\text{the insurance company that covers damage caused by hail}’\)

A possible dependency analysis of (57) is shown in Figure 4.52. The word
“selskab” is analyzed as the head of the entire compound, while the remaining words have been analyzed as comp (compound) adjuncts in a hierarchical structure. The “ing” morpheme is a derivational morpheme that turns a verb into a noun, the “s” morpheme is a glue morpheme without independent meaning, and “et” is a definiteness morpheme; unlike the other morphemes, these three morphemes are not analyzed as independent lexemes in DG, as we will see in Remark 4.91.

Other dependency analyses are possible. For example, instead of using a single edge label comp for all compound adjuncts, we could have used a more fine-grained label that specifies how the compound adjunct modifies the head, eg, by means of a preposition that indicates the relationship between the compound noun and the head noun, as in the dependency analysis of (57) in Figure 4.53 which specifies that “the hail damage insurance company” can be paraphrased as “the company for insurance against damage by hail”. Instead of using prepositions as labels, we could equally well have used semantic roles, or we could have analysed some of the modifiers as complements (eg, “damage” as a prepositional object of “insure”).

Remark 4.79. Obviously, if we allow nodes in a dependency graph to represent morphemes, we must explicitly encode spaces in an analysis of written language. One idea is to assume that spaces function as punctuation marks that attach themselves as adjuncts to the head of the pre-
4.7. Lexical transformations: morphology

Vi gennemanalyserede forsikringsselskabet Codan.

We thoroughly analyzed the insurance company Codan.

Figure 4.54: Dependency analysis of (58) with spaces.

When nodes represent morphemes, we must ensure that word order constraints prevent syntactic dependents and word external punctuation signs from being placed between a lexeme and its morphological dependents.

Remark 4.80. By using the same dependency structure to analyze both syntax and morphology, we simplify the problem of specifying the interface between morphology and syntax. For example, Danish allows coordinations where two morphemes are coordinated as in syntax (ie, the conjuncts are separated by spaces), although the coordinated structure serves as a morphological dependent of another word. An example is given by (59) “Hvad betaler du for ind- og udlandstelefoni?” which can be analyzed as shown in Figure 4.55.

(59) Hvad betaler du for ind- og ud= land= s= telefon= i?
What pay you for in- and out= country telephone?

‘What do you pay for national and international phone calls?’

Examples like (59), where a syntactic phrase functions as a morphological dependent, make it difficult to maintain a strict separation between syntax and morphology. A similar phenomenon can be observed in English sentences like (60), where the compound adjunct “shoot-anything-
that-moves” is a syntactic phrase which has been coerced into a morphological unit by replacing all spaces with hyphens.

(60) He was in his shoot-anything-that-moves mode.

Morphology would be simple if it was always concatenative. Unfortunately, it is not.

Remark 4.81. In morphology, there are many non-concatenative phenomena. For example, the past of regular verbs in English is formed by adding the suffix “ed” or “d” to the end, eg, “walk/walked” and “die/died”; but for irregular verbs, we observe word pairs such as “see/saw”, “sing/sang”, and “catch/caught” where the entire stem is modified. Other languages, such as Arabic, exhibit even more complicated patterns of non-concatenative morphology — for an overview of these, see Spencer (1998). Since DG’s complement and adjunct mechanisms are concatenative, we need some kind of additional formal machinery to account for non-concatenative morphology. In DG, this machinery is based on the lexical transformations introduced in Definition 2.17 and on the non-concatenative morphological operators described below.

Remark 4.82. In order to account for non-concatenative morphology in DG, we will allow spellings and pronunciations to be specified as stems followed by sequences of morphological operators. A morphological operator is called concatenative if it does not affect the stem (ie, it encodes a possibly context-sensitive suffix or prefix), and non-concatenative if it affects the stem (ie, it encodes a vocal shift, a shortening, or some other replacement operation within the stem). We assume that the inventory of morphological operators is partly language-dependent — ie, some morphological operators (such as suffixation, prefixation, and ending replacement) may be
Figure 4.56: A set of concatenative (top and middle) and non-concatenative (bottom) morphological operators suitable for Danish.

genetically encoded, whereas other more specialized operators are learned during language acquisition.

Example 4.83. Figure 4.56 shows a set of concatenative and non-concatenative morphological operators suitable for Danish morphology. In other languages, a slightly different set of morphological operators may be more appropriate. The context-free concatenative operators (top) can be used to add a given suffix or prefix, whereas the context-sensitive concatenative operators (middle) can be used to ensure a given ending by adding a minimal suffix, or to duplicate an ending consonant. The non-concatenative operators (bottom) can be used to replace one ending with another, to replace the most recent vocal with another, or to delete the most recent vocal while undoubling any double consonant that immediately precedes it.

Remark 4.84. In order to ensure that morphological operators are computationally efficient, we will limit their power by assuming that they are local, ie, that they cannot affect any part of the morpheme sequence that precedes the last suffix. With this locality assumption, a morpheme sequence such as “vær + e + {være/er}” is ill-formed because the operation

\[14\]

We conjecture that local morphological operators are powerful enough to give a natural and computationally efficient account of the morphology of most languages, in particular Danish, English, and German. It is unclear to us whether there are languages where the locality condition is unsatisfactory. From a formal point of view, the locality condition can always be upheld by encoding a suffix \(\beta \) by means of a non-concatenative operator \(\alpha / \alpha \beta \). However, this solution is unsatisfactory if it results in more than a small number of exceptional rules.
“{være/er}” is only allowed to apply to the preceding suffix “e”, not to “vær + e”. To encode the derivation of “er” from “vær” via “være”, we must instead use a non-concatenative morpheme sequence such as “vær + {vær/være} + {være/er}.”

Remark 4.85. Concatenative and non-concatenative morphological operators must be treated differently in the lexicon. If a transformed lexeme t' is derived from a base lexeme t by means of a sequence of concatenative transformations, then the speech signal for t is part of the speech signal for t', so t is automatically retrieved whenever we hear t'; but if the derivation of t' involves non-concatenative transformations, the lexicon must be compiled so that we know all the transformed roots associated with a given base lexeme. Whenever a root associated with a base lexeme is encountered in the speech signal, the set of all matching transformed lexemes is then computed from the base lexeme.

For example, the lexeme “go” has the transformed root “went”, so hearing the speech signal “went” must somehow trigger the retrieval of the lexeme “go”. We will assume that after retrieving “go”, the human lexicon applies the set of all available transformations to “go” in order to find all associated transformations matching “went”. In that way, it will end up returning the transformed lexeme “go.PAST” which matches “go + {go/went} = went”.

Example 4.86. We have made an analysis of a computational morphological dictionary for Danish by Peter Molbæk containing 36,525 base forms of Danish verbs, nouns, and adjectives. Figure 4.57 shows the number of distinct sequences of morphological operators needed to account for the most important inflections in Danish, using the morphological operators in Figure 4.56. The table shows that each inflection involves a relatively small number of distinct morphological transformations, often not more than a handful and never more than fifty. Figure 4.58 and 4.59 show the ten most frequent morphological operations for computing a past verb from an imperative verb, and an indefinite plural noun from an indefinite singular noun, respectively (the absence of an operator indicates unchanged spelling, i.e., a “zero” morpheme). These examples also show that even if we only look at the most frequent paradigms in Danish, the entire inventory of morphological operators is needed.

So far, we have merely introduced the morphological operators that are
4.7. Lexical transformations: morphology

<table>
<thead>
<tr>
<th>verbs</th>
<th>Count</th>
<th>Example roots</th>
</tr>
</thead>
<tbody>
<tr>
<td>imperative → past</td>
<td>37</td>
<td>tro lav prov arbejd bo</td>
</tr>
<tr>
<td>imperative → perfect</td>
<td>28</td>
<td>spil stil byg støt slut</td>
</tr>
<tr>
<td>imperative → infinitive</td>
<td>3</td>
<td>men ske brug begynd hør</td>
</tr>
<tr>
<td>infinitive → present</td>
<td>7</td>
<td>sæt besæt afsæt tilsæt udsæt</td>
</tr>
<tr>
<td>infinitive → gerund</td>
<td>2</td>
<td>bliv grib skriv driv stig</td>
</tr>
<tr>
<td>infinitive → participle</td>
<td>2</td>
<td>gør afgør omgør opgør udgør</td>
</tr>
<tr>
<td>present → present passive</td>
<td>3</td>
<td>lyd bryd frys snyd kryb</td>
</tr>
<tr>
<td>past → past passive</td>
<td>3</td>
<td>far jag lad tag drag</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>nouns</th>
<th>Count</th>
<th>Example roots</th>
</tr>
</thead>
<tbody>
<tr>
<td>sg.indef → sg.def</td>
<td>16</td>
<td>gid giv sid drik kling</td>
</tr>
<tr>
<td>sg.indef → pl.indef</td>
<td>43</td>
<td>kom hed løb sov græd</td>
</tr>
<tr>
<td>pl.indef → pl.def</td>
<td>11</td>
<td>far jag lad tag drag</td>
</tr>
<tr>
<td>adjectives</td>
<td>Count</td>
<td>Example roots</td>
</tr>
<tr>
<td>pos.com → pos.neut</td>
<td>4</td>
<td>far jag lad tag drag</td>
</tr>
<tr>
<td>pos.com → pos.def/pl</td>
<td>8</td>
<td>kom hed løb sov græd</td>
</tr>
<tr>
<td>pos.com → comparative</td>
<td>12</td>
<td>lyd bryd frys snyd kryb</td>
</tr>
<tr>
<td>comparative → superlative</td>
<td>4</td>
<td>far jag lad tag drag</td>
</tr>
</tbody>
</table>

Figure 4.57: Inflections in Danish and the number of distinct sequences of morphological operators needed to account for all inflected words in the Molbæk dictionary.

<table>
<thead>
<tr>
<th>Count</th>
<th>Operations</th>
<th>Example roots</th>
</tr>
</thead>
<tbody>
<tr>
<td>4516</td>
<td>ede</td>
<td>tro lav prov arbejd bo</td>
</tr>
<tr>
<td>830</td>
<td>{?} ede</td>
<td>spil stil byg støt slut</td>
</tr>
<tr>
<td>603</td>
<td>te</td>
<td>men ske brug begynd hør</td>
</tr>
<tr>
<td>104</td>
<td>{?} a¨a</td>
<td>sæt besæt afsæt tilsæt udsæt</td>
</tr>
<tr>
<td>100</td>
<td>{i˘e}</td>
<td>bliv grib skriv driv stig</td>
</tr>
<tr>
<td>69</td>
<td>{ør/jorde}</td>
<td>gør afgør omgør opgør udgør</td>
</tr>
<tr>
<td>67</td>
<td>{y˘ø}</td>
<td>lyd bryd frys snyd kryb</td>
</tr>
<tr>
<td>62</td>
<td>{a˘o}</td>
<td>far jag lad tag drag</td>
</tr>
<tr>
<td>59</td>
<td></td>
<td>kom hed løb sov græd</td>
</tr>
<tr>
<td>53</td>
<td>{i˘a}</td>
<td>gid giv sid drik kling</td>
</tr>
</tbody>
</table>

Figure 4.58: The most frequent operations for computing past verbs from imperative verbs in Danish.

We will now describe how the DG lexicon can be used to encode morphology by coupling morphological operators with the lexical transformations defined in Definition 2.17.

Remark 4.87. The intuition behind lexical transformations is that some lexemes are more basic than others: *base lexemes* (representing the base forms of words) are permanently listed in the lexicon, whereas *transformed lexemes* (representing inflected or derived forms) are generated during lexical
Figure 4.59: The most frequent operations for computing plural indefinite nouns from singular indefinite nouns in Danish.

lookup from a base lexeme by means of the transformation rules associated with the base lexeme and its transformed lexemes. The transformation rule specifies the phonology, syntax, and semantics of the target lexeme by computing a set of local feature functions that must be applied to the source lexeme in order to produce the target lexeme. Since transformations can be inherited and dynamic lexemes can function as source lexemes for new transformations, lexical transformations enable a highly compact encoding of the lexicon.

Example 4.88. Figure 4.60 shows how Danish verbs are inflected.\footnote{In Danish grammar, it is often assumed that the imperative, past, and perfect are derived from the infinitive. However, since the infinitive is morphologically more complex than the imperative, we believe that choosing the imperative as the base form gives a simpler account of verbal morphology. If this is correct, then one might expect Danish children to use imperative forms before they start using infinitive forms. However, I do not know whether this prediction is empirically valid or not.} The imperative verb functions as the base lexeme, and is equipped with three transformations that produce the infinitive, past, and perfect forms of the verb, respectively. The infinitive is in turn equipped with three transformations that produce the present, present participle, and gerund forms. The infinitive, present, past, and perfect forms (boldfaced) are in addition equipped with transformations for computing the passive and expletive form of the verb. That is, no passive or expletive form is associated with
imperatives, participles, and gerunds.

We will now sketch how these transformations can be encoded in the DG lexicon. All transformation types will be encoded as subtypes of the type `transform` shown below. The function `&append_tphon` ensures that the phon feature of a transformed type is computed as the phon feature of the source type concatenated with the tphon feature of the transformation type; the function `&delete_transforms` ensures that all features in the source type starting with “transform:” are set to null; and the function `©_features` copies all features in the transformation type starting with “#” to the transformed type after deleting the initial “#” in the feature name.

```
type(transform)
  -> tfunc(tf func: phon, phon, &append_tphon)
  -> tfunc(tf func: transform, transform, &delete_transforms)
  -> tfunc(tf func: xfeatures, '', &copy_features);
```

For each inflection, we specify an abstract transformation type (e.g., `infinitive_transform` below) that specifies that the transformed complement frames, and hence the semantics of the inflected forms, are computed from the source lexeme by the function `&transform_cframes_infinitive`. Moreover, we list all the transformations that are licensed by the transformed infinitival lexeme by default (present, participle, gerund, expletive, passives, etc.).

```
type(infinitive_transform)
  -> super(transform)
  -> tfunc(tf func: cframes, 'cframe', &transform_cframes_infinitive)
  -> set('#transform: present', 'present_transform_[e]r')
  -> set('#transform: participle', 'participle_transform_[e]nde')
  ...
```

For each inflection pattern, we must define a transformation type that links
an abstract transformation type to a specific morphological operation, over-
riding any unwanted defaults. For example, the transformation type infiniti-
tive_transform_?e defines an infinitive transform with the associated mor-
phological operation “{?} e”.

\[
\begin{align*}
\text{type(\text{infinitive}_\text{transform}_\text{\{?\} e})} \\
\quad &\rightarrow \text{super(\text{infinitive}_\text{transform})} \\
\quad &\rightarrow \text{set(\text{tphon}, [\{?\}, e])}; \\
\text{type(\text{infinitive}_\text{transform}_0)} \\
\quad &\rightarrow \text{super(\text{infinitive}_\text{transform})} \\
\quad &\rightarrow \text{set(\text{tphon}, [])}; \\
\quad &\rightarrow \text{set('#transform:participle', 'participle_transform_ende')};
\end{align*}
\]

We can now specify that an imperative is by default a verb which licenses
three different transformations: an infinitive inflection with morphological
operation “e”, a past inflection with operation “ede”, and a perfect inflec-
tion with operation “et”.

\[
\begin{align*}
\text{type(\text{imperative})} \\
\quad &\rightarrow \text{super(\text{verb})} \\
\quad &\rightarrow \text{transform(infinitive, infinitive_transform_\text{\{?\} e})} \\
\quad &\rightarrow \text{transform(past, past_transform_ede}) \\
\quad &\rightarrow \text{transform(perfect, perfect_transform_et});
\end{align*}
\]

For particular verbs, we can now specify the lexical entry for the impera-
tive form of the verb. Regularly inflected verbs like “leg” (“play”) inherit
all the default inflections provided by the supertype imperative, whereas
irregularly inflected verbs like “se” (“see”) must overwrite the inherited
defaults if they are incorrect.

\[
\begin{align*}
\text{type(\text{leg}:v)} \\
\quad &\rightarrow \text{super(\text{imperative})} \\
\quad &\rightarrow \text{phon(leg)} \\
\quad &\rightarrow \text{cframe(\ldots)}; \\
\text{type(\text{se}:v)} \\
\quad &\rightarrow \text{super(\text{imperative})} \\
\quad &\rightarrow \text{phon(se)} \\
\quad &\rightarrow \text{cframe(\ldots)} \\
\quad &\rightarrow \text{transform(infinitive, 'infinitive_transform_0')} \\
\quad &\rightarrow \text{transform(past, 'past_transform_\text{\{\text{?}\} e\text{\'{\text{?}}}a'})) \\
\quad &\rightarrow \text{transform(perf, 'perf_transform_\text{t}')};
\end{align*}
\]
The DG lexicon allows other ways of encoding morphology (eg, we could have stored the entire inflectional paradigm in features associated with the base lexeme). But the example we have given demonstrates the transformational machinery needed to encode morphology efficiently in DG.

Example 4.89 (expletives and passives in Danish). Lexical transformations can also be used to account for expletives and passives in Danish. Figure 4.61 lists the expletive and passive transformations that are responsible for producing the expletive (61), the expletive passive (62), the direct object passive (63), the indirect object passive (64), the sentential passive (65), and the prepositional passive (66). We assume that the passive and expletive transformations do not affect the lexical meaning directly, but can affect the lexical meaning indirectly by changing the topic-focus structure.

The lexical transformations responsible for expletives and passives can be encoded in the same way as inflections, as sketched in Example 4.88.

(61)
En gæst vil komme. Der vil komme en gæst.
A guest will come. There will come a guest.

(62)
Han kører forsigtigt. Der køres forsigtigt af ham.
He drives gently. There is-driven gently by him.

(63)
Han vækker et barn. Et barn vækkes af ham.
He awakens a child. A child is-awoken by him.

(64)
Han giver os den. Vi gives den af ham.
He gives us it. We are-given it by him.

(65)
Vi frygter hun synger. Hun frygtes af os at syngle.
We fear she sings. She is-feared by us to sing.

(66)
Han lytter til hjertet. Hjertet lyttes til af ham.
He listens to heart-the. Heart-the is-listened to by him.

Remark 4.90. Derivational morphology is encoded in the DG lexicon in the same way as inflectional morphology — ie, each derivation that a particular lexeme can undergo is encoded by means of a lexical transformation that is either specified in the local feature function of the lexeme or inherited from a supertype.

Remark 4.91. So far, we have introduced two different mechanisms for encoding morphology in DG: morphological complements and adjuncts as described in Remark 4.78 for compounding, and lexical transformations
<table>
<thead>
<tr>
<th>transform</th>
<th>source frame</th>
<th>target frame</th>
</tr>
</thead>
</table>
| expletive (61) | subj=X
dobj=null
expl=null
no prep. objects | subj=null
dobj=X
expl=any expletive
doib must be discourse-new |
| expletive passive (62) | subj=X
pobj:af=null | subj=null
pobj:af=af+[^nobij X]
expl=any expletive
doib must be discourse-new if present |
| direct object passive (63) | subj=X
dobj=Y
pobj:af=null | subj=Y
doib=null
pobj:af=af+[^nobij X] |
| indirect object passive (64) | subj=X
iobj=Y
pobj:af=null | subj=Y
iobj=null
pobj=af+[^nobij X] |
| sentential passive (65) | subj=X
vobj=Y+finite
pobj:af=null | subj=noun
vobj=Y+infinitive
pobj:af=af+[^nobij X]
sjob must be filler subj of vobj |
| prepositional passive (66) | subj=X
pobj:Y=Z
pobj:af=null
doib=null
vobj=null | subj=Z
pobj:Y=null
pobj=af+[^nobij X] |

Figure 4.61: Expletive and passive transformations in Danish.

with morphological operators as described in Remarks 4.82 and 4.87 for inflectional and derivational morphology and lexical alternations. The first mechanism only works for concatenative morphology, whereas the latter mechanism works for both concatenative and non-concatenative morphology. This means that there is a choice with respect to how concatenative morphological phenomena are encoded. So what determines this choice?

Obviously, noun compounds of the form “X Y” are best treated by means of morphological complements and adjuncts, for if we treat X as a prefix or a suffix produced by a lexical transformation of Y, then we need a different transformation function for each of the many thousand choices of X. Conversely, the third person singular suffix “s” in English (or the glue morpheme “s” in Danish) is best encoded by means of a lexical trans-
formation, for if we encode it as an independent lexeme, then the parser will be forced to treat each occurrence of the letter “s” in the speech signal as a potential instance of the suffix, thereby resulting in an unnecessary amount of ambiguity in the grammar. In general, we will prefer the mechanism that results in the most efficient encoding of the grammar in terms of space and processing complexity. However, like with the complement-adjunct distinction, there may be borderline cases where both mechanisms can sensibly be used because the difference in economy is small.

As a guiding principle, we will assume that morphemes are encoded as independent lexemes when they function as words in their own right or can be separated from the stem by other dependents (as in compounding, incorporation, and clitics), and that they are encoded by means of lexical transformations when the morpheme is closely coupled with the root (as in inflectional and derivational morphology).

Remark 4.92. There are two distinct research traditions in morphology (cf. Spencer 1998). The **Item-and-Arrangement tradition** tradition (Hockett 1958; Chomsky and Halle 1968; Lieber 1980; Wiese 1996) assumes that an inflected form is produced by concatenating a stem with an abstract, lexically listed morpheme that has its own phonology, syntax, and semantics. In contrast, the **Item-and-Process tradition** (Sapir 1921; Hockett 1958; Matthews 1991) assumes that an inflected form is produced by an inflectional process that computes the inflected form from the stem — i.e., there is no principled difference between concatenative and non-concatenative morphology, they just represent different phonological operations (concatenation and stem modification).

DG is in some sense indebted to both traditions. On the one hand, DG adheres to the Item-and-Process view by assuming that inflectional and derivational morphemes are not independent lexemes, but rather the result of lexical transformations. On the other hand, the locality condition proposed in Remark 4.84 gives suffixation a special status, and DG’s notion of transformation types and concatenative and non-concatenative morphological operators is perhaps not all that far from the Item-and-Arrangement view. In this way, DG morphology combines aspects of both traditions.

In this section, we have outlined how DG can be extended to morphology by using complement and adjunct mechanisms to account for compounds and by using lexical transformations to account for inflections, derivations, and lexical alternations such as expletives and passives.
4.8 The Danish Dependency Treebank

Summary. We briefly describe the Danish Dependency Treebank, and how the analyses in the treebank relate to the analyses presented in this dissertation. We provide an estimate for the inter-annotator agreement with the DDT scheme and briefly describe the DTAG treebank tool that has been used to create the DDT annotations.

In this chapter and the two preceding chapters, a wide range of phenomena have been analyzed within the framework of DG. These analyses — or, rather, earlier versions of these analyses — have formed the basis of our work on the Danish Dependency Treebank (DDT) and the accompanying annotation manual (Kromann et al. 2003; Kromann and Lynge 2004). In this section, which incorporates material from (Kromann 2003), we briefly describe our work on DDT and the few differences between the analyses there and the analyses proposed in this dissertation.

Remark 4.93. The Danish Dependency Treebank is a dependency treebank with 5,540 sentences totalling 100,200 tokens. DDT consists of 536 randomly selected texts from the morphosyntactically tagged Danish PAROLE corpus (Keson and Norling-Christensen 1998), a balanced corpus of written text consisting of 1,553 text samples containing approximately 150-250 tokens each and covering a wide range of different text mediums, genres, and topics. DDT annotations have been created manually by a research assistant at a rate of approximately 1,000 words per day, using the DTAG treebank tool (Kromann 2005). Approximately 25% of the texts have been double-checked by the author of this dissertation.

Remark 4.94. DDT is based on the Danish PAROLE corpus (Keson and Norling-Christensen 1998), where all tokens are tagged with a lemma and a morphosyntactic PAROLE tag. The main PAROLE word classes for Danish are shown in Figure 4.62. DDT extends the PAROLE corpus by encoding relations between words, such as primary dependencies, secondary dependencies, and syntactically determined coreference in relative clauses, resumptive pronouns, etc. The filler and coreference annotations in DDT are necessary for recovering the underlying functor-argument structure from the annotations. The most important edge labels for primary dependencies in DDT are shown in Figure 4.63.

Secondary dependencies are encoded in DDT by means of the simplified representation described in Remark 2.85 — ie, in order to avoid filler
4.8. The Danish Dependency Treebank

<table>
<thead>
<tr>
<th>A: adjective</th>
<th>P: pronoun</th>
</tr>
</thead>
<tbody>
<tr>
<td>AN: normal</td>
<td>PP: personal</td>
</tr>
<tr>
<td>AC: cardinal</td>
<td>PD: demonstrative</td>
</tr>
<tr>
<td>AO: ordinal</td>
<td>PI: indefinite</td>
</tr>
<tr>
<td>C: conjunction</td>
<td>PT: interrog./relative</td>
</tr>
<tr>
<td>CC: coordinating</td>
<td>PC: reciprocal</td>
</tr>
<tr>
<td>CS: subordinating</td>
<td>PO: possessive</td>
</tr>
<tr>
<td>I: interjection</td>
<td>RG: adverb</td>
</tr>
<tr>
<td>N: noun</td>
<td>SP: preposition</td>
</tr>
<tr>
<td>NP: proper</td>
<td>U: unique</td>
</tr>
<tr>
<td>NC: common</td>
<td></td>
</tr>
</tbody>
</table>

| V: verb |
| VA: main |
| VE: medial |
| X: extra-linguistic unit |
| YA: abbreviation |
| XF: foreign word |
| XP: punctuation |
| XR: formulae |
| XS: symbol |
| XX: other |

Figure 4.62: The main PAROLE word class tags for Danish.

<table>
<thead>
<tr>
<th>Complement edges</th>
<th>Adjunct edges</th>
</tr>
</thead>
<tbody>
<tr>
<td>aobj adjectival object</td>
<td>appa parenthetical apposition</td>
</tr>
<tr>
<td>avobj adverbal object</td>
<td>appr restrictive apposition</td>
</tr>
<tr>
<td>conj conjunct of coordinator</td>
<td>coord coordination</td>
</tr>
<tr>
<td>dobj direct object</td>
<td>list unanalyzed sequence</td>
</tr>
<tr>
<td>expl expletive subject</td>
<td>mod modifier</td>
</tr>
<tr>
<td>iobj indirect object</td>
<td>modo dobj-oriented modifier</td>
</tr>
<tr>
<td>lobj locative-directional object</td>
<td>modp parenthetical modifier</td>
</tr>
<tr>
<td>nobj nominal object</td>
<td>modr restrictive modifier</td>
</tr>
<tr>
<td>numa additive numeral</td>
<td>mods subject-oriented modifier</td>
</tr>
<tr>
<td>numm multiplicative numeral</td>
<td>name additional proper name</td>
</tr>
<tr>
<td>part verbal particle</td>
<td>namef additional first name</td>
</tr>
<tr>
<td>pobj prepositional object</td>
<td>namel additional last name</td>
</tr>
<tr>
<td>possd possessed in genitives</td>
<td>pnct punctuation modifier</td>
</tr>
<tr>
<td>pred subject or object predicate</td>
<td>rel relative clause</td>
</tr>
<tr>
<td>qobj quotation object</td>
<td>title title of person</td>
</tr>
<tr>
<td>subj subject</td>
<td>xpl explification (colon)</td>
</tr>
</tbody>
</table>

Figure 4.63: The most important edge labels in DDT.

nodes, DDT uses a scheme where the relation between the filler source and the filler governor is indicated by means of a secondary edge from the filler governor to the filler source, with square brackets around the dependency label in order to indicate that the dependency involves a hidden filler, as shown in Figure 4.64. Similarly, syntactically determined coreference is encoded in DDT by means of a ref edge from the antecedent to the anaphor, as shown in Figure 4.65. Finally, dependencies between a word and an elided node in a gapping coordination is encoded by means of a gapping
dependency, represented by an edge whose edge label indicates the path (represented as a colon-separated sequence of dependency types) from the gapping source to the governor source in the source tree for the gap, as shown in Figure 4.66; the angular brackets are used to distinguish gapping dependencies from primary dependencies.16

16The Prague Dependency Treebank (Böhmová et al.) and the Tiger/Negra Treebank (Brants et al. 2002) analyze coordinators as heads of the coordination. However, since the coordinator and the second conjunct form a unit in discontinuous coordinations such as “I will serve Mary coffee, and John”, our analysis of the first conjunct as the head seems preferable.
Remark 4.95. Penn Treebank II (Marcus et al. 1994) also encodes filler and syntactic coreference dependencies, but most other treebanks leave them unspecified, including the Prague Dependency Treebank (Böhmová et al.), the Tiger/Negra Treebank (Brants et al. 2002) which only encodes secondary fillers in coordinations, and the Danish Arboretum (Bick 2003).

Remark 4.96. DDT has been based on a 110 page annotation manual (Kro- mann et al. 2003), which is unfortunately still incomplete. The manual describes the general principles behind the DDT annotation and the specific annotations of a wide range of phenomena. The annotation manual provides analyses for a wide range of phenomena that have not been addressed in this dissertation, such as proper names (with first names, last names, and titles), parenthetical and restrictive appositions, possessives, expletives, vocatives, external topics (resumptive pronouns), tag questions, clefts, and many others.

There are no significant differences between the analyses in the annotation manual and the analyses in the present dissertation, except for coordinations where we have changed our analysis: in DDT, the second conjunct in a coordination is headed by the coordinator, whereas in this dissertation, the coordinator is analyzed as a modifier of the second conjunct.

Remark 4.97. On the basis of three independently annotated text samples with a total of 483 tokens, the labelled inter-annotator agreement with the DDT scheme is estimated to be around 92%, and the unlabelled inter-annotator agreement is estimated to be around 97% (the estimates are somewhat unreliable because of the small size of the test corpus). Figure 4.67 shows the detailed statistics for the most frequent edge types, and the total sums. The “Label” column shows the edge label, “A1” and “A2” the number of edges produced by the two annotators with the given label, “Agreed” the number of edges they agreed on, and “Agreement” the inter-annotator agreement, calculated by means of the formula:

$$\text{Agreement} = \frac{2 \cdot \text{Agreed}}{A1 + A2}. $$

Unsurprisingly, the inter-annotator agreement is lowest for dependency types such as prepositional objects (pobj), locative-directional objects (lobj), and modifiers (mod) where it is difficult to make a principled distinction between complement and adjunct constructions, and where attachment ambiguity is the rule rather than the exception.
Chapter 4. Examples of linguistic analyses

<table>
<thead>
<tr>
<th>Label</th>
<th>A1</th>
<th>A2</th>
<th>Agreed</th>
<th>Agreement</th>
</tr>
</thead>
<tbody>
<tr>
<td>nobj</td>
<td>93</td>
<td>94</td>
<td>93</td>
<td>99.5</td>
</tr>
<tr>
<td>mod</td>
<td>83</td>
<td>82</td>
<td>69</td>
<td>83.6</td>
</tr>
<tr>
<td>pct</td>
<td>60</td>
<td>60</td>
<td>59</td>
<td>98.3</td>
</tr>
<tr>
<td>subj</td>
<td>46</td>
<td>46</td>
<td>46</td>
<td>100.0</td>
</tr>
<tr>
<td>vobj</td>
<td>28</td>
<td>27</td>
<td>27</td>
<td>98.2</td>
</tr>
<tr>
<td>pobj</td>
<td>28</td>
<td>21</td>
<td>20</td>
<td>81.6</td>
</tr>
<tr>
<td>dobj</td>
<td>22</td>
<td>22</td>
<td>18</td>
<td>81.8</td>
</tr>
<tr>
<td>[subj]</td>
<td>23</td>
<td>17</td>
<td>17</td>
<td>85.0</td>
</tr>
<tr>
<td>conj</td>
<td>13</td>
<td>14</td>
<td>13</td>
<td>96.3</td>
</tr>
<tr>
<td>possd</td>
<td>13</td>
<td>13</td>
<td>13</td>
<td>100.0</td>
</tr>
<tr>
<td>ref</td>
<td>11</td>
<td>11</td>
<td>11</td>
<td>100.0</td>
</tr>
<tr>
<td>pred</td>
<td>11</td>
<td>10</td>
<td>10</td>
<td>95.2</td>
</tr>
<tr>
<td>coord</td>
<td>10</td>
<td>10</td>
<td>9</td>
<td>90.0</td>
</tr>
<tr>
<td>rel</td>
<td>10</td>
<td>10</td>
<td>10</td>
<td>100.0</td>
</tr>
<tr>
<td>lobj</td>
<td>5</td>
<td>14</td>
<td>5</td>
<td>52.6</td>
</tr>
<tr>
<td>namef</td>
<td>7</td>
<td>7</td>
<td>7</td>
<td>100.0</td>
</tr>
<tr>
<td>part</td>
<td>6</td>
<td>3</td>
<td>3</td>
<td>66.7</td>
</tr>
<tr>
<td>qobj</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>100.0</td>
</tr>
<tr>
<td>total labelled</td>
<td>483</td>
<td>474</td>
<td>440</td>
<td>92.0</td>
</tr>
<tr>
<td>total unlabelled</td>
<td>483</td>
<td>474</td>
<td>463</td>
<td>96.8</td>
</tr>
</tbody>
</table>

Figure 4.67: Inter-annotator agreement for the DDT annotation scheme, with statistics for the most frequent edge types.

Remark 4.98. The DDT annotations have been created with the DTAG treebank tool (Kromann 2005). DTAG can handle any syntax graph consisting of nodes connected by directed labeled edges. The nodes may correspond to words, phrases, or fillers, and may have any number of associated attributes for encoding word class, lemma, etc. The labeled edges may form any graph structure, including trees, discontinuous graphs, cyclic graphs, and graphs where nodes may have any number of in-coming or out-going edges. In this respect, DTAG allows a wider range of graphs than most other treebank tools, including the tools from the Tiger/Negra treebank project (König et al. 2003).

DTAG displays syntax graphs continuously by generating a PostScript file which is viewed by a PostScript viewer, and which can also be included in text files. Nodes are drawn in linear order, with different attributes shown on separate lines. Directed edges are drawn above or below
the nodes, with the edge label shown at the arrow head, as in Figure 4.68 left. DTAG can print graphs corresponding to entire texts by splitting the graphs into several lines and pages, as in the excerpt in Figure 4.68 right. DTAG can also be used to print multi-speaker dialogue and discourse annotations. The precise formatting (colors, dashes, placement of edges and attributes, etc.) can be configured by the user.

DTAG is command-line based. For example, to specify a directed edge from node 34 to node 45 with label "subj", the user must type the command "34 subj 45" (DTAG allows any string without white-space to be used as a label). DTAG also has commands for comparing two graphs and visualizing the differences, and for performing search-and-replace within all texts in the treebank. A search is specified as a constraint on a set of node variables. Simple constraints specify conditions on a node’s associated attributes, or the relative node order or connecting edges of two nodes, and can be combined into complex constraints by the logical operators ‘and’, ‘or’, ‘not’, ‘exist’, and ‘all’; the use of ‘exist’ and ‘all’ means that DTAG’s query language is slightly more powerful than TIGERSearch (König et al. 2003). For example, the following DTAG command is used to find all instances in the treebank where a verb V has a “der” (“there”) expletive E, but no direct object D:

```
find -corpus ($E expl $V) & ($E[lemma] =˜ /^der$/) & ! exist($D, $D dobj $V)
```

The entire set of DTAG commands is described in (Kromann 2005). The file format used by DTAG is described in (Kromann et al. 2003).

In this section, we have described the Danish Dependency Treebank and its relationship to DG and DTAG. The creation of DDT shows that it is possible to use DG to analyze a large corpus, even though there are many
areas where the DDT analyses can be refined (e.g., by providing more detailed classifications of modifiers, by annotating discourse dependencies and functor-argument structures, and by extending the annotation manual to cover a larger number of phenomena). The DDT has been a major motivation for our work on statistical language learning, since it provides rich statistical training material, a topic we will return to in chapter 6.

4.9 Summary

In this chapter, we have proposed specific DG analyses for a wide range of natural language phenomena, including word order phenomena such as topicalizations, extrapositions, and scramblings; filler phenomena such as control constructions, relatives, and parasitic gaps; coordination phenomena such as sharing and gapping; punctuation phenomena; morphological phenomena such as inflections, derivations, and lexical alternations; and the structure of discourse, spoken language, and dialogue. We have also argued that the DG formalism is in principle expressive enough to give a rule-based account of these phenomena, and we have briefly outlined some of the lexical rules and cost functions needed in a rule-based account.

Given the small number of pages we have been able to devote to each phenomenon, there are undoubtedly many important aspects that we have overlooked, particularly with respect to the manually written cost functions we have proposed to account for the phenomena. However, the chapter has at least shown that a rule-based account of a language requires a highly complex grammar with a large number of rules. For that reason, we will argue in chapter 6 that it is better to reduce the complexity by using a probabilistic language model where the rules are induced by a probabilistic learning algorithm, rather than specified manually.
Part III

Statistical language learning
Chapter 5

Statistical estimation with hierarchical partition models

Statistical estimation lies at the heart of probabilistic language learning, and it is therefore essential to develop estimation algorithms that can take advantage of the classification hierarchies associated with language data. In this chapter, we propose a statistical estimation algorithm that can be used to estimate probability distributions for hierarchically organized data. In section 5.1, we introduce some prerequisites from probability theory and statistics. In section 5.2, we define our notion of hierarchies and show how hierarchies can be combined by means of product and intersection hierarchies. In section 5.3, we propose HPM and XHPM models as a general family of probability distributions that can be used to model random variables with hierarchically organized data, including random vectors where we want to calculate conditional probabilities with a non-hierarchical component. In section 5.4, we propose an estimation algorithm based on local search that constructs an HPM or XHPM model that maximizes the posterior Bayesian probability of the model, using a prior model probability based on the Minimum Description Length principle. Finally, in section 5.5, we present a simulation study that shows that the algorithm performs well in a wide range of situations.

5.1 Prerequisites from probability theory and statistics

Summary. We introduce the most important concepts from probability theory and statis-
Probability theory is concerned with modelling repeatable random processes, such as the throwing of a dice or the random selection of a word in a treebank. In probability theory, a random process is modelled by means of a probability measure, which quantifies how often the random process can be expected to produce a given outcome. Probability measures are defined formally below (cf. Rice 1988; Halmos 1974/1950):

Definition 5.1. Let \(S \) be a set, and let \(\mathcal{A} \) be a set of subsets of \(S \). Then \(S \) is called a measurable space with measurable sets \(\mathcal{A} \) provided (a) \(\mathcal{A} \) contains \(\emptyset \) and \(S \); (b) \(\mathcal{A} \) is closed under set difference, ie, if \(A, B \in \mathcal{A} \), then \(A - B \in \mathcal{A} \); and (c) \(\mathcal{A} \) is closed under countable unions, ie, if \(A_i \in \mathcal{A} \), then \(\bigcup_{i=1}^{\infty} A_i \in \mathcal{A} \).

Definition 5.2. Let \(S, S' \) be measurable spaces. A function \(f : S \rightarrow S' \) is called measurable if the inverse image \(f^{-1}(A') \) of any measurable set \(A' \) in \(S' \) is a measurable set in \(S \).

Definition 5.3. Let \(S \) be a measurable space with measurable sets \(\mathcal{A} \). A function \(\mu : \mathcal{A} \rightarrow [0, \infty] \) is called a measure on \(S \) if \(\mu(\emptyset) = 0 \) and \(\mu(\bigcup_{i=1}^{\infty} A_i) = \sum_{i=1}^{\infty} \mu(A_i) \) for any sequence of mutually disjoint \(A_i \in \mathcal{A} \). If \(\Omega \) is a measurable space with measure \(P \) satisfying \(P(\Omega) = 1 \), we will say that \(\Omega \) is a probability space with probability measure (or distribution) \(P \), and we will refer to \(P(A) \) as the probability of the measurable set \(A \).

Example 5.4. In this dissertation, \(\Omega \) will usually be a finite set, and \(\mathcal{A} \) will usually be the set of all subsets of \(\Omega \). In that case, we can write:

\[
P(A) = \sum_{\omega \in A} P(\{\omega\})
\]

for any subset \(A \) of \(\Omega \). We will say that the distribution \(P \) is uniform if \(P(\{\omega\}) = 1/|\Omega| \) where \(|\Omega| \) denotes the number of elements in \(\Omega \), and non-zero if \(P(\{\omega\}) \) is non-zero for all \(\omega \in \Omega \).

Random variables can be viewed as functions that classify outcomes in terms of some classification, ie, they map outcomes to classifications. We follow standard practice by defining the notation and terminology below.

Definition 5.5. A random variable is a measurable function \(X : \Omega \rightarrow \Omega' \) from a probability space \(\Omega \) with distribution \(P \) into a measurable space \(\Omega' \). \(X \)
induces a distribution \(P_X \) on \(\Omega' \) given by:
\[
P_X(A') = P(X^{-1}(A')) = P(\{\omega \in \Omega \mid X(\omega) \in A'\})
\]
for every measurable set \(A' \) in \(\Omega' \). \(P_X \) is called the distribution associated with \(X \), and the set \(\Omega' \) is called the possible outcomes of \(X \). As a notational convention, we often write \(P(X) \) instead of \(P_X \), \(P(X = x) \) instead of \(P_X(\{x\}) \), \(P(X \in A') \) instead of \(P_X(A') \), and \(\Omega(X) \) instead of \(\Omega' \).

Definition 5.6. Let \(\Omega \) be a probability space with probability measure \(P \). If \(X_1, \ldots, X_n \) are random variables \(X_i : \Omega \to \Omega' \), we let \(X = (X_1, \ldots, X_n) \) denote the random variable \(X : \Omega \to \Omega_1 \times \cdots \times \Omega_n \) defined by \(X(\omega) = (X_1(\omega), \ldots, X_n(\omega)) \). The composite random variable \(X \) is often called a random vector. By convention, we write \(P(X_1, \ldots, X_n) \) instead of \(P(X_1, \ldots, X_n) \), and \(P(X_1 = x_1, \ldots, X_n = x_n) \) instead of \(P((X_1, \ldots, X_n)(\{(x_1, \ldots, x_n)\})) \).

Example 5.7. A fair dice with the six equally probable outcomes 1, \ldots, 6 can be modelled by a probability space \(\Omega = \{1, 2, 3, 4, 5, 6\} \) with distribution \(P \) satisfying \(P(\{\omega\}) = 1/6 \) for all outcomes \(\omega \in \Omega \) (ie, \(P \) is the uniform distribution on \(\Omega \)). Let \(X \) be the random variable that maps \(\Omega \) into the set \(\Omega' = \{\text{odd, even}\} \) according to whether the outcome is odd or even. We can then compute \(P(X = \text{odd}) = P(X^{-1}(\{\text{odd}\})) = P(\{1, 3, 5\}) = P(\{1\}) + P(\{3\}) + P(\{5\}) = 1/2 \).

Example 5.8. The process of randomly selecting a word instance from a treebank can be modelled by means of a probability space \(\Omega \) with probability measure \(P \), where \(\Omega \) consists of all word instances in the treebank, and \(P \) assigns probability \(P(\{\omega\}) = 1/|\Omega| \) to each word instance \(\omega \) in \(\Omega \). The word, word class, and ontological class associated with each word instance can be modelled by means of three random variables \(W : \Omega \to W, \) \(C : \Omega \to C, \) and \(O : \Omega \to O \) that map each word instance to its associated word, word class, or ontological class. We can then express the probability of observing the word \(w \) as \(P(W = w) \), and the probability of observing a word with word class \(c \) and ontological class \(o \) as \(P(C = c, O = o) \).

It is often convenient to define distributions by means of densities.

Definition 5.9. Let \(S \) be a measurable space with measure \(\mu \), and let \(f : S \to [0, \infty] \) be a function with \(\int f \, d\mu = 1 \). Then \(f \) is called the density for the distribution \(F \) on \(S \) defined by \(F(A) = \int_A f \, d\mu \). As a notational convention, we sometimes write \(P_f \) instead of \(F \) for the distribution induced by \(f \).
For the definition of integration within measure theory, we refer the interested reader to (Halmos 1974/1950). As an illustration, we will consider two special cases of densities.

Remark 5.10. Let \(\mathbb{R} \) be the set of real numbers, and let \(\mu \) be the standard measure on \(\mathbb{R} \) defined by \(\mu([a,b]) = b - a \). Then any function \(f: \mathbb{R} \to [0,\infty[\) with \(\int f(x) \, dx = 1 \) is a density with distribution \(F(A) = \int_A f(x) \, dx \). Moreover, \(f \) is the derivative of \(F \), ie, \(f(x) = F'(x) \).

Remark 5.11. Let \(S \) be a countable set with the point measure, ie, \(\mu(\{s\}) = 1 \) for all \(s \in S \). Any function \(f: S \to [0,\infty[\) with \(\int_S f \, d\mu = \sum_{s \in S} f(s) = 1 \) then defines a density with distribution \(F \) given by

\[
F(A) = \int_A f \, d\mu = \sum_{s \in A} f(s).
\]

Since \(f \) can be recovered from \(F \) by means of the identity \(f(a) = F(\{a\}) \), any distribution on \(S \) can be expressed by means of a density.

In statistical analysis, we are given the observed outcomes of a random variable \(X \) where the underlying distribution \(P(X) \) is unknown, and must reconstruct \(P(X) \) by making informed estimates of \(P(X) \) on the basis of the observed outcomes. That is, we must construct estimates of \(P(X) \) that could plausibly have generated the observed outcomes. \(P(X) \) can be estimated in many different ways. The conceptually simplest estimator is the empirical estimator defined below, where the estimated probabilities are simply the observed frequencies of each outcome.

Definition 5.12. Let \(d = (d_1, \ldots, d_n) \) be a sequence of observed outcomes of a random variable \(X \). Then the empirical estimator \(\hat{f}_{d}^{\text{emp}} \) corresponding to \(d \) is the density defined by:

\[
\hat{f}_{d}^{\text{emp}}(x) = \frac{|d \cap \{x\}|}{|d|} = \frac{\text{number of observations of } x}{\text{total number of observations}}.
\]

In theory, the empirical estimator corresponding to a sequence of observations of a random variable \(X \) with a countable probability space converges towards \(P(X) \) with probability 1 as the number of observations increases. However, the empirical estimator is an unreliable estimator of \(P(X) \) when there are few observations, or if the space of outcomes is infinite. First of all, it tends to **overfit** the data, ie, it uses a complicated density.
function to capture statistically insignificant aspects of the observations, instead of using a simpler density function which only captures statistically significant aspects. Secondly, the empirical estimator assigns zero probability to outcomes that were not observed in the data sequence by pure chance, i.e., it predicts that these outcomes are impossible. This failing, known as the \textit{sparse data problem}, is especially serious if there are few observations, or if some outcomes have a very low probability of occurring.

\textbf{Example 5.13.} The 20 observations in Fig. 5.1 are generated by a uniformly distributed random variable with 10 possible outcomes. The true distribution is shown as a dotted line, the empirical estimator is shown as a solid line. The empirical estimator is unnecessarily complicated (overfitting), and predicts that the outcome 6 is impossible (the sparse data problem).

To find an estimator \hat{f} that solves the problems with overfitting and zero probabilities, we must make simplifying assumptions about the shape of the underlying density f. Classical statistical methods assume that f belongs to a pre-defined family \mathcal{F} of density functions (e.g., the family of normal distributions or χ^2-distributions), and selects \hat{f} as the member of \mathcal{F} that optimizes some quantity, usually likelihood, defined formally below.

\textbf{Definition 5.14.} Let d be a sequence of observations of a random variable X, and let f be any density on $\Omega(X)$. Then the likelihood $L_f(d)$ of the data d given density f is defined by:

$$L_f(d) = \prod_{d_i \in d} f(d_i)$$

If \mathcal{F} is a family of densities, then a density $\hat{f} \in \mathcal{F}$ is called a \textit{maximum likelihood estimator} for the data d within the family \mathcal{F} if \hat{f} maximizes $L_f(d)$,
ie, if:

\[\hat{f} = \arg \max_{f \in \mathcal{F}} L_f(d) \quad (ie, \ L_{\hat{f}}(d) = \max_{f \in \mathcal{F}} L_f(d)) \]

The following proposition shows that the maximum likelihood estimator within the family of all possible density functions coincides with the empirical estimator when there are only finitely many possible outcomes.

Proposition 5.15. Let d be a set of observations of a random variable with possible outcomes Ω where Ω is finite, and let \mathcal{F} be the family consisting of all density functions on Ω. Then the maximum likelihood estimator of d within \mathcal{F} is unique and equals the empirical estimator \hat{f}_{emp}^d.

Proof. Write $\Omega = \{\omega_1, \ldots, \omega_m\}$, $d = \{d_1, \ldots, d_n\}$, $n_i = |\{d_j \in d \mid d_j = \omega_i\}|$, and let $f(\omega_i) = f_i / \sum_{j=1}^m f_j$ with $f_1, \ldots, f_m \in [0, \infty]$ denote the maximum likelihood estimator of the data d. Write:

\[L_f(d) = \prod_{i=1}^m \left(\frac{f_i}{\sum_{j=1}^m f_j} \right)^{n_i}. \]

Applying the logarithm on both sides gives:

\[l_f(d) = \log L_f(d) = \sum_{i=1}^m n_i \log f_i - n \log \left(\sum_{j=1}^m f_j \right). \]

In order to maximize $l_f(d)$, we must have $\frac{\partial l_f(d)}{\partial f_i} = 0$ for all $i = 1, \ldots, m$, ie, we must have:

\[\frac{\partial l_f(d)}{\partial f_i} = \frac{n_i}{f_i} - \frac{n}{\sum_{j=1}^m f_j} = 0 \quad \text{so that} \quad f(x_i) = \frac{f_i}{\sum_{j=1}^m f_j} = \frac{n_i}{n}. \]

This shows that f equals the empirical distribution. \(\square \)

An alternative to the classical statistical methods is to use Bayesian methods, where the density f and the data d are viewed as random variables F and D. Assuming that the observations in D are statistically independent given F and that $P(D_i = d_i | F = f) = f(d_i)$, we get:

\[P(D = d | F = f) = \prod_{i=1}^n P(D_i = d_i | F = f) = \prod_{i=1}^n f(d_i) = L_f(d). \]

Thus, from a Bayesian point of view, maximum likelihood estimators maximize the probability $P(D = d | F = f)$ of the data d given the model f.
5.1. Prerequisites from probability theory and statistics

However, the data \(d\) are given in advance whereas the model \(f\) is unknown, so from a Bayesian point of view, it makes more sense to optimize the probability \(P(F|D)\) of the model given the data, instead of optimizing the probability \(P(D|F)\) of the data given the model. To calculate \(P(F|D)\), we observe that \(P(D = d)\) does not depend on \(f\), so that Bayes’ law\(^1\) gives:

\[
\arg\max_{f \in F} P(F = f | D = d) = \arg\max_{f \in F} \frac{P(D = d | F = f)P(F = f)}{P(D = d)} = \arg\max_{f \in F} P(D = d | F = f)P(F = f) = \arg\max_{f \in F} L_f(d) \cdot P(F = f)
\]

Thus, a Bayesian estimator maximizes the likelihood \(L_f(d)\) multiplied with the prior probability \(P(F = f)\) of the density \(f\). Bayesian estimators are defined formally below:

Definition 5.16. Let \(d\) be a sequence of observations of a random variable \(X\), let \(F\) be a family of densities, and let \(P(F)\) be a distribution on \(F\). Then a density \(\hat{f} \in F\) is called a **Bayesian estimator** within the family \(F\) given prior distribution \(P(F)\) if it maximizes the quantity \(L_f(d) \cdot P(F = f)\), ie, if:

\[
\hat{f} = \arg\max_{f \in F} L_f(d) \cdot P(F = f)
\]

Remark 5.17. A maximum likelihood estimator is a special case of a Bayesian estimator, namely the case where \(P(F)\) is uniform. For suppose \(P(F)\) is uniform. Then \(P(F = f) = P(F = f')\) for all \(f, f' \in F\) so that:

\[
\arg\max_{f \in F} L_f(d) \cdot P(F = f) = \arg\max_{f \in F} L_f(d).
\]

Remark 5.18. In Bayesian estimation, we are often given a weight function \(W: F \to [0, \infty]\) rather than a prior distribution \(P(F): F \to [0, 1]\). The weight can be interpreted as a **relative probability**, ie, if \(f_1\) and \(f_2\) are distributions in

\(^1\)The **conditional probability** \(P(X|Y)\) of the outcome of the random variable \(X\) given the outcome of the random variable \(Y\) is defined as \(P(X|Y) = P(X, Y)/P(Y)\). By applying this definition twice, we can deduce **Bayes’ law**, which states that:

\[
P(X|Y) = \frac{P(Y|X)P(X)}{P(Y)}.
\]
we can interpret f_1 as being $W(f_1)/W(f_2)$ times more likely than f_2. If \mathcal{F} is finite, we can turn W into a distribution $P(F)$ by normalization:

$$P(F = f) = \frac{W(f)}{W_0} \quad \text{where} \quad W_0 = \sum_{f' \in \mathcal{F}} W(f')$$

A Bayesian estimator \hat{f} given prior weight W (and hence prior distribution $P(F)$) then satisfies:

$$\hat{f} = \arg \max_{f \in \mathcal{F}} L_f(d) \cdot \frac{W(f)}{W_0} = \arg \max_{f \in \mathcal{F}} L_f(d) \cdot W(f)$$

since W_0 is constant, i.e., we can compute the Bayesian estimator corresponding to a weight function W without normalizing W first. If \mathcal{F} is infinite, W_0 may not be defined because the sum does not converge to a finite value. In this setting, we will interpret W as a function that expresses the relative probability of different outcomes, and say that \hat{f} is a Bayesian estimator within the family \mathcal{F} with prior weight (or prior relative probability) W if \hat{f} maximizes $L_f(d) \cdot W(f)$.

The biggest and most controversial problem in Bayesian analysis is how to define the prior distribution $P(F)$ or prior weight $W(F)$. Obviously, $W(F)$ cannot be estimated empirically, but must be defined theoretically. This means that Bayesian analysis is mostly used in cases where theoretical considerations lead to a natural estimate of $W(F)$. Maximum-likelihood estimation suffers from similar problems, since it depends on the choice of a predefined family \mathcal{F} of distributions. It is therefore mostly used in cases where theoretical considerations lead to a natural choice of \mathcal{F}, and where the uniform distribution is the most natural prior distribution on \mathcal{F}.

In this section, we have introduced some of the most important ideas from probability theory and statistical estimation. In the following section, we define hierarchies before turning to the important question of how to estimate probability distributions for hierarchically organized data.

5.2 Hierarchies

Summary. We define hierarchies as a way of abstracting over observations in a treebank. We also show how hierarchies can be combined to form product hierarchies, restriction
Hierarchies, and intersection hierarchies. We also show how a probability distribution on the classes in a hierarchy can be extended to class unions, intersections, and differences.

Hierarchies play an important role in linguistics because they are used for lumping together similar phenomena and expressing generalizations. They are also the basis for statistical language modelling. Intuitively, a hierarchy consists of a set of classes organized into a tree structure — or, more generally, a directed acyclic graph structure — by means of an immediate subclass relation. Hierarchies are defined formally below.

Definition 5.19. Let C be a set whose elements are called *classes*, and let $H : C \to \text{Pow}(C)$ be a function that maps a class c into the set $H(c)$ of immediate subclasses of c in H. Given two classes $s, c \in C$, we say that s is a *subclass* of c in H if there exists classes c_1, \ldots, c_n in C with $n > 1$ such that $c_1 = c$, $c_n = s$, and c_{i+1} is an immediate subclass of c_i for each $i = 1, \ldots, n - 1$. The function H is called a *hierarchy* with classes C if H satisfies the following three conditions:

- **Unique root condition:** There is a unique class T in H, called the *root class* of H, such that T is not a subclass of any other class in H.
- **Acyclicity condition:** No class in H is a subclass of itself.
- **Connectedness condition:** Every class in H is a subclass of T, except for the root class T itself.

The set C of classes in H is sometimes denoted by H^{class}. The set consisting of a class c and all its subclasses in H is denoted by $H^*(c)$. A class c in H is called a *terminal class* if $H(c)$ is empty and a *non-terminal class* if $H(c)$ is non-empty. We let H^{term} denote the set of terminal classes in H, we let H^{nterm} denote the set of non-terminal classes in H, and we let $H^{\text{term}}(c) = H^{\text{term}} \cap H^*(c)$ denote the set of terminal classes corresponding to a class c in H. The hierarchy H is sometimes said to be *defined on* H^{term}.

Example 5.20. Hierarchies are drawn in the usual way, i.e., with superclasses at the top, terminal classes at the bottom, and with lines connecting classes with their immediate subclasses. For example, Figure 5.2 encodes a word-class hierarchy where $H(\text{N}) = \{\text{NP}, \text{P}, \text{NC}\}$, $H(\text{VA}) = \{\text{fly}_{v1}, \text{sing}_{v1}\}$, $H^*(C) = \{\text{C}, \text{CC}, \text{CS}, \text{and}_{cc1}, \text{if}_{cs1}\}$, and $H^{\text{term}}(C) = \{\text{and}_{cc1}, \text{if}_{cs1}\}$. Hierarchies can also be used to encode inflectional hierarchies for number, gender, definiteness, diathesis, verb form, etc. (as in Figure 5.3), or to encode ontological hierarchies (as in Figure 5.4). Many ontologies are non-trees, including the large-scale ontology WordNet (Fellbaum 1998).
In many cases, we are particularly interested in hierarchies that are equipped with an intersection operation.

Definition 5.21. A hierarchy \(H \) with classes \(C \) and an associated operation \(\cap' : C \times C \to C \) on \(C = C \cup \{\emptyset\} \) is called an *intersective hierarchy* with *class intersection operation* \(\cap' \) if

\[
H^*(a \cap' b) = H^*(a) \cap H^*(b)
\]

for all \(a, b \in C \), where \(\cap \) denotes the normal set intersection operation and we define \(H^*(\emptyset) = \emptyset \).
5.2. Hierarchies

When estimating a probability distribution for a random vector with categorical data, we often have many natural hierarchies for each individual random variable in the random vector. For example, lexemes can be organized in word class hierarchies, inflectional hierarchies, and ontological hierarchies. We therefore need a way of combining several different hierarchies for a lexeme into a single hierarchy, and for combining the hierarchies associated with each individual random variable in a random vector into a single hierarchy for the entire random vector. The product hierarchy defined below is a natural way to combine many hierarchies into a single higher-dimensional hierarchy (we omit the proof that the product hierarchy is a hierarchy, and that the product operation is associative).

Definition 5.22. Let H_1, \ldots, H_n be hierarchies, and let C_i denote the set of classes in H_i. The product hierarchy $H = H_1 \times \cdots \times H_n$ with classes $C = C_1 \times \cdots \times C_n$ is then defined as the function $H: C \rightarrow \text{Pow}(C)$ that returns all classes $s \in C$ that are identical to c, except for one coordinate c_i which has been replaced with an immediate subclass s_i, ie, H is given by:

$$H(c) = \{ s \in C \mid \exists i: s_i \in H_i(c_i) \text{ and } \forall j \neq i: s_j = c_j \}$$

where c_i denotes the ith coordinate in the tuple c. If H_1, \ldots, H_n are intersective, then H is also intersective with intersection operation

$$(a_1, \ldots, a_n) \cap (b_1, \ldots, b_n) = (a_1 \cap b_1, \ldots, a_n \cap b_n).$$

Example 5.23. Let H_1 and H_2 be the two simple word class and number hierarchies shown in Figure 5.5. Their product is shown in Figure 5.6. Note that both H_1, H_2, and $H_1 \times H_2$ are intersective.

The restriction hierarchy is another useful way of creating new hierarchies. Intuitively, the restriction hierarchy is the result of restricting a hierarchy to a given set of terminals (we omit the proof that the restriction hierarchy is a hierarchy).
Definition 5.24. Let \(H \) be a hierarchy, and let \(T \) be a non-empty set of terminals contained in \(H^{\text{term}} \). Then the restriction hierarchy \(H / T \) is the hierarchy with classes \((H/T)^{\text{class}}\) given by:

\[
(H/T)^{\text{class}} = \{ c \in H^{\text{class}} \mid H^*(c) \text{ contains at least one member of } T \}
\]

and function \(H/T : (H/T)^{\text{class}} \to \text{Pow}((H/T)^{\text{class}}) \) defined by:

\[
H/T(c) = H(c) \cap (H/T)^{\text{class}}
\]

Remark 5.25. If \(H \) is intersective, then \(H / T \) is also intersective, using as its intersection operation the operation \(\cap \) for \(H \) restricted to \((H/T)^{\text{class}}\).

Finally, when we have more than one hierarchy for the same set of terminals \(T \), we may want to combine the hierarchies into a single hierarchy for \(T \). For example, we may have classified a set of lexemes by means of a word class hierarchy and an ontological hierarchy, and want to combine the two hierarchies into one. This can be accomplished with the intersection hierarchy defined below (being defined as the restriction of a product hierarchy, it is obviously a hierarchy).

Definition 5.26. Let \(H_1, \ldots, H_n \) be hierarchies with the same set of terminals \(T \), ie, \(T = H_i^{\text{term}} \) for all \(i \). Then the intersection hierarchy \(H = H_1 \cap \ldots \cap H_n \) is defined as the hierarchy:

\[
H = (H_1 \times \cdots \times H_n) / \iota(T)
\]
5.2. Hierarchies

where \(\iota: T \rightarrow T^n \) is the function defined by \(\iota(t) = (t, \ldots, t) \). By identifying \(T \) and \(\iota(T) \) by means of \(\iota \), we can say that \(H \) defines a hierarchy on \(T \). A class \((c_1, \ldots, c_n) \) in the intersection hierarchy is often written as \(c_1 \cap \ldots \cap c_n \).

Intersection hierarchies are particularly suited to combining multiple hierarchies for a random variable into a single hierarchy, whereas product hierarchies are more appropriate when creating a single hierarchy for a random vector on the basis of the hierarchies associated with the individual random variables in the random vector.

Remark 5.27. If \(H_1, \ldots, H_n \) are intersective, then so is \(H_1 \cap \ldots \cap H_n \), with the intersection operation defined by Definitions 5.22 and 5.24.

Example 5.28. The intersection hierarchy for the two hierarchies in Figure 5.5 is shown in Figure 5.7. The intersection hierarchy is defined as the restriction of the product hierarchy in Figure 5.6 to the set of terminals consisting of (she,she), (flew,flew), and (we,we), where we identify (she,she) with “she,” (flew,flew) with “flew,” and (we,we) with “we.” Because the two component hierarchies are intersective, so that both the product and restriction hierarchies are intersective, the intersection hierarchy is intersective as well.

When defining probability distributions over hierarchies, it is convenient to extend the set of classes to include finite unions, intersections, and differences of classes.
Definition 5.29. Let H be a hierarchy with classes C. We define the class algebra C^* as the smallest set of expressions satisfying:

(a) \emptyset is an expression in C^*;
(b) c is an expression in C^* if $c \in C$;
(c) $c \cap c'$, $c \cup c'$, and $c - c'$ are expressions in C^* if $c, c' \in C^*$.

We extend H^* from C to C^* by recursively defining:

\[
\begin{align*}
H^*(\emptyset) &= \emptyset \\
H^*(a \cap b) &= H^*(a) \cap H^*(b) \\
H^*(a \cup b) &= H^*(a) \cup H^*(b) \\
H^*(a - b) &= H^*(a) - H^*(b)
\end{align*}
\]

Given $c, c' \in C^*$, we write $c = c'$ and say that c and c' are equivalent if $H^*(c) = H^*(c')$.

Given a probability distribution over the classes C in a hierarchy, we can always compute a probability distribution over C^* by the procedure described below.

Remark 5.30. Let H be an intersective hierarchy with classes C, and let F be a distribution on C. Then F induces a distribution F^* on C^* defined recursively by:

\[
\begin{align*}
F^*(\emptyset) &= 0 \\
F^*(c) &= F(c) \quad (\forall c \in C) \\
F^*(a - b) &= F^*(a) - F^*(a \cap b) \quad (\forall a, b, c \in C^*) \\
F^*(a \cup b) &= F^*(a) + F^*(b) - F^*(a \cap b) \quad (\forall a, b, c \in C^*)
\end{align*}
\]

Before we apply F^* on an expression, we always ensure that the expression is intersection-free by applying the following reductions to it and by using the class intersection operation associated with H to eliminate intersections between classes in C:

(a) map $a \cap (b - c)$ and $(b - c) \cap a$ to $(a \cap b) - (a \cap c)$ for all $a, b, c \in C^*$;
(b) map $a \cap (b \cup c)$ and $(b \cup c) \cap a$ to $(a \cap b) \cup (a \cap c)$ for all $a, b, c \in C^*$.

In general, this will result in a computation with exponential worst-case time complexity, a quite costly computation. However, the computation can be made reasonably efficient in most cases by applying further reductions, such as mapping $a \cap \emptyset$ to \emptyset, or $a \cup s$ to a if s is a subclass of a.

In this section, we have defined hierarchies and different ways of combining several different hierarchies into a single hierarchy, and we have described how to extend probability distributions over a set C of classes to the set C^* containing all finite unions, intersections, and set differences. In the following section, we will propose a family of statistical models that can be used to estimate probability distributions for hierarchically organized random variables given a data set.

5.3 Hierarchical Partition Models (HPMs and XHPMs)

Summary. We propose HPM and XHPM models as a general family of probability distributions that can be used to model random variables with hierarchically organized data, including random vectors where we want to calculate a conditional probability, and where some of the random variables follow arbitrary distributions. We show how any ordered cover in an HPM or XHPM model can be obtained by means of a sequence of partitionings and mergings of the entire space of outcomes. On the basis of the Minimum Description Length principle, we formulate a prior model probability that can be used to compare different HPM or XHPM models in Bayesian estimation, so that we can identify optimal estimates, ie, models that maximize the posterior probability given a data set, a set of hierarchies and prior distributions, and other estimation parameters.

Most probabilistic language models use random vectors as their basic building blocks. For example, a random local tree $X \rightarrow Y_1 \ldots Y_n$ in a PCFG can be viewed as a random vector (X, Y_1, \ldots, Y_n), a random complement frame with head H and complements C_1, \ldots, C_n can be viewed as a random vector (H, C_1, \ldots, C_n), and a random adjunct frame with head H and adjunct A can be viewed as a random vector (H, A). Given a treebank, we can obtain samples of a random vector $X = (X_1, \ldots, X_n)$ from the treebank, and use the observations to estimate a probability distribution for X.

The empirical estimator is the simplest estimator of a random variable. It is a good estimator when there are few outcomes and all outcomes have been observed a reasonable number of times — the statistical literature often states 5 observations of each outcome as the minimum for reliable estimation. Unfortunately, the empirical estimator suffers from problems with overfitting and sparse data when there are many outcomes with few or no observations. Since treebanks usually contain only a tiny fraction of the possible word combinations in a language, treebank observations result in highly sparse data, ie, most word combinations are never observed.
The empirical estimator is therefore unsuited to estimating treebank probabilities directly.

However, the problems with the empirical estimator can be overcome if we group similar outcomes into classes (or partitions), and observe classes of outcomes rather than individual outcomes. If the classes are made large enough to be observed at least 5 times, the empirical estimator can give a reliable estimate of the probability of the classes. In order to estimate the probability of individual outcomes, we must then distribute the estimated probability of a class among the individual outcomes in the class, using some prior probability distribution on the set of outcomes. In this way, we can estimate the probability of a class \(c \) of outcomes by means of the estimator \(\hat{F} \) defined by:

\[
\hat{F}(c) = \sum_{s \in S} \frac{|d \cap s|}{|d|} \cdot \frac{F_{\text{prior}}(c \cap s)}{F_{\text{prior}}(s)},
\]

where \(d \) is the data set, \(S \) is the set of partitions, and \(F_{\text{prior}} \) is a prior distribution on the set of possible outcomes. This estimation method has two advantages: we can use the classification hierarchies to overcome the sparse data problem by making statistics on classes of outcomes rather than individual outcomes, and the use of a prior distribution allows us to create a complex statistical model as a chain of successive refinements to simpler statistical models. By using simple but robust priors, we get a model where the prior is used when there are few data, but where the model becomes increasingly more fine-grained when the amount of data increases.

When estimating a probability distribution on a hierarchically structured space of terminals, we have to partition the terminals into disjoint subsets so that we can compute the probability of each subset on the basis of observed frequencies. The disjoint subsets could be chosen to be disjoint classes in our hierarchy, as proposed by Li and Abe (1998, 1999). However, this strategy is somewhat impractical, for if we have a class \(c \) and a subclass \(s \), then the set difference \(c - s \) does not normally correspond to a disjoint union of a few large classes in \(H \), and we are not interested in disjoint unions of many small classes in \(H \) because long unions are computationally expensive and small classes result in problems with sparse data.
The obvious remedy is to pursue a strategy where the disjoint subsets in the partition may correspond to either classes or set differences between classes and finite unions of classes. The ordered covers defined below are a convenient way of representing partitions of this kind.

Definition 5.31. Let H be an intersective hierarchy with classes C. A sequence $o = (o_1, \ldots, o_n)$ of classes in H is called an ordered cover of H if every terminal in H is contained in $H^{\text{term}}(o_i)$ for some i. The ordered cover o partitions H^{term} into n disjoint partitions $\pi_{o,1}, \ldots, \pi_{o,n} \in C^*$ given by:

$$\pi_{o,k} = o_k - (o_1 \cup \ldots \cup o_{k-1}).$$

Partition $\pi_{o,i}$ is said to have $\pi_{o,j}$ as its super partition if $i < j$ and o_i is a subclass of o_j; if j is minimal in this respect, then $\pi_{o,j}$ is called an immediate super partition for $\pi_{o,i}$. A partition is said to be a subpartition of its super partitions, and a partition without super partitions is called a root partition.

The class o_i is sometimes denoted by $\bar{\pi}_{o,i}$.

Given a hierarchy, an ordered cover, a prior distribution, and a set of weights for each partition, we have an associated probability distribution.

Definition 5.32. Let H be an intersective hierarchy with classes C and ordered cover $o = (o_1, \ldots, o_n)$, let F be a prior distribution on C^*, and let $w = (w_1, \ldots, w_n)$ be a set of non-negative weights such that $\sum_{i=1}^{n} w_i F(\pi_{o,i}) = 1$. Then the tuple $M = (H, o, F, w)$ is called a hierarchical partition model (HPM) with hierarchy H, ordered cover o, prior distribution F, and weights w. The distribution F_M on C^* defined by:

$$F_M(c) = \sum_{i=1}^{n} w_i F(c \cap \pi_{o,i})$$

for all $c \in C^*$ is called the HPM distribution induced by the model M. The constant w_i can be interpreted as the average density within partition $\pi_{o,i}$ within the measurable space induced by the prior distribution F.

The weights w in a hierarchical partition model can be estimated from a data set by means of the empirical estimator.

Remark 5.33. Let H be a hierarchy with classes C, let o be an ordered cover, and let F be a prior density on C^* such that $F(\pi_{o,i}) > 0$ unless $d \cap \pi_{o,i}$ is
empty. A data set \(d = (d_1, \ldots, d_n) \) then induces an HPM model \(M_d = M_d(H, o, F) = (H, o, F, w) \) where \(w \) is given by:

\[
w_i = \frac{|d \cap \pi_{o,i}|}{|d|} \cdot \frac{1}{F(\pi_{o,i})}.
\]

That is, we have:

\[
F_{M_d}(c) = \sum_{i=1}^{n} \frac{|d \cap \pi_{o,i}|}{|d|} \cdot \frac{F(c \cap \pi_{o,i})}{F(\pi_{o,i})}.
\]

The first quotient represents the proportion of the data set that falls within the given partition, and the second quotient represents the proportion of the partition that is contained in \(c \). \(M_d(H, o, F) \) is said to be the HPM model induced by \(d \) given \(H, o, \) and \(F \).

Remark 5.34. The relation between a partition and its immediate super partitions defines a tree structure on the ordered cover, if the last class in the ordered cover is \(T \). This tree structure can be used to compute \(F_{M_d}(c) \) efficiently: instead of computing the sum over all partitions from left to right, we can compute it top-down, skipping all subpartitions of a partition \(\pi_{o,i} \) where \(c \cap o_i = \emptyset \). In particular, if \(c \) is a terminal class, there is exactly one partition \(\pi_{o,i} \) where \(c \cap \pi_{o,i} \) is non-empty, so in this case, the tree functions as a classification tree (cf. Breiman et al. 1984).

In HPM estimation, we are given a data set \(d \), a hierarchy \(H \), and a prior distribution \(F \), and must find a hierarchical partition model \(M_d(H, o, F) \) that fits the data well, ie, we must determine an ordered cover \(o \) whose resulting model \(M_d(H, o, F) \) fits the data well. It is convenient to use the Bayesian estimation method described in section 5.1, ie, to assume that we are given a prior weight \(W \) on the set of all HPM models, and must find an ordered cover \(o \) that results in a model \(M = M_d(H, o, F) \) that maximizes the posterior weight \(W_{post}(M) \), defined as the prior weight \(W(M) \) times the likelihood \(L_{F_M}(d) \), ie, a model satisfying:

\[
\hat{M} = \arg \max_M W_{post}(M) = \arg \max_M W(M) \cdot L_{F_M}(d).
\]
The prior weight W can be selected in many ways. Intuitively, the prior weight should be selected so that the estimated model \hat{M} fits the data well while being as simple as possible, i.e., we must strike a good balance between underfitting (failing to find patterns that are present in the data) and overfitting (finding spurious patterns that are not present in the true underlying distribution).

Remark 5.35. One possible way of selecting the prior weight is to follow the Minimum Description Length (MDL) principle (cf. Rissanen 1978; Barron et al. 1998; Stolcke 1994; Li and Abe 1998). The philosophy behind MDL is that we should choose a model that is optimal for compressing the observed data, i.e., a model in which the model, the model parameters, and the data can be encoded with as few bits as possible. Following Li and Abe (1998), we assume that the parameter description length $\ell(M)$ of a model $M = (H, o, F, w)$ estimated from the data set d is defined by:

$$\ell(M) = \frac{|o| - 1}{2} \log_2(|d|).$$

The number $|o| - 1$ is the number of free parameters needed to encode the probabilities of the disjoint subsets in the partition corresponding to o, and $\frac{1}{2} \log_2(|d|)$ is the number of bits that can reasonably be used to describe a parameter estimated from a data set with $|d|$ observations, from an information theoretic point of view. With these assumptions, the MDL principle gives prior weight:

$$W_{\text{MDL}}(M) = \left(\frac{1}{2}\right)^{\ell(M)} = \left(\frac{1}{2}\right)^{\frac{1}{2}(|o| - 1) \log_2(|d|)} = \left(\sqrt{|d|}\right)^{1 - |o|}$$

and hence posterior weight:

$$W_{\text{MDL-post}}(M) = \left(\sqrt{|d|}\right)^{1 - |o|} \cdot L_F(M).$$

A model that maximizes $W_{\text{MDL-post}}$ is called an MDL estimate for the data set d. Intuitively, the parameter description length encodes how many bits are needed to encode the parameters, and the minus log likelihood value encodes how many bits are needed to encode the observed data within the given model. We will not go deeper into the MDL principle and its theoretical justifications here, but refer the interested reader to Li and Abe (1998), Quinlan and Rivest (1989), and Barron et al. (1998) for further details.
In statistical estimation, one often distinguishes between bumps (ie, areas where the density is high) and dips (ie, areas where the density is small) (cf. Basu et al. 2002). In sparse data, it is very difficult to identify dips reliably, whereas bumps are easier to identify because they contain many observations. The notions of bumps and dips within HPMs are defined formally below.

Definition 5.36. Let $M = (H, o, F, w)$ be an HPM model. A partition $\pi_{o,i}$ in M is called a bump if it has higher average density than its immediate super partition $\pi_{o,j}$ (ie, $w_i > w_j$), and a dip if it has lower average density than its immediate super partition (ie, $w_i < w_j$). M is called a bump model if each of its partitions is either a root partition or a bump.

To ensure robustness in the statistical estimation, it is desirable to require HPM models to be bump models where each non-root partition contains at least 5 observations (or some other reasonable threshold). The prior MDL weight does not differentiate between bumps and dips, or place restrictions on the number of observations within non-root partitions, but it is straightforward to modify the MDL weight so that it does.

Definition 5.37. Let $M = (H, o, F, w)$ be a hierarchical partition model induced by the data set d. A partition $\pi_{o,i}$ in o is called degenerate if $\pi_{o,i}$ fails to be a bump, or if $\pi_{o,i}$ is a non-root partition with fewer than mincount observations, where mincount is some globally defined threshold. M is called degenerate if it contains a degenerate partition.

Definition 5.38. The bump-MDL prior weight W_{bMDL} is a function which maps an arbitrary hierarchical partition model M into the weight:

$$W_{\text{bMDL}}(M) = \begin{cases} 0 & \text{if } M \text{ is degenerate} \\ W_{\text{MDL}}(M) & \text{otherwise.} \end{cases}$$

The quantity $W_{\text{bMDL-post}}(M) = W_{\text{bMDL}}(M)L_{f_M}(d)$ is called the bump-MDL posterior weight. A hierarchical partition model $M = (H, o, F, w)$ that maximizes $W_{\text{bMDL-post}}(M)$ is called an optimal bump-MDL estimate for the data d with hierarchy H and prior distribution F.

Ordered covers can be constructed by means of the following two elementary cover operations.
Step 0: (T) unpartitioned

Step 1: (c_1, T) partitioning T with c_1

Step 2: (c_{11}, c_1, T) partitioning c_1 with c_{11}

Step 3: (c_{11}, c_1, c_2, T) partitioning T with c_2

Step 4: (c_{11}, c_{12}, c_1, c_2, T) partitioning c_1 with c_{12}

Step 5: (c_{11}, c_{12}, c_2, T) merging c_1

Figure 5.8: A sequence of partitionings and mergings.

Definition 5.39. Let H be a hierarchy, and let O be the set of all possible ordered covers of H. If o and o' are ordered covers, we write o.o' for the concatenation of o and o'. A pair o ↦ o' with o, o' ∈ O is called a cover operation mapping o into o'. A cover operation o.(c).o' ↦ o.(s,c).o' where s is an immediate subclass of c is called a partitioning of c. A cover operation o.(c).o' ↦ o.o' is called a merging of c. Partitionings and mergings are collectively referred to as elementary cover operations.

Example 5.40. An example of a sequence of partitionings and mergings within the unpartitioned square T is shown in Figure 5.8. The shade of gray indicates the density estimated for the class by the corresponding HPM estimator, where black corresponds to high densities, and white corresponds to low densities.

The proposition below shows that any ordered cover can be produced from the root class by means of a sequence of partitionings and mergings.

Proposition 5.41. Any ordered cover c.(T) with T ∉ c can be reached from (T) by means of a series of partitionings and mergings, i.e., there exists a sequence
Chapter 5. Statistical estimation with hierarchical partition models

\[o_1, \ldots, o_n \text{ of ordered covers with } o_1 = (T) \text{ and } o_n = c.(T) \text{ such that } o_{i+1}.(T) \text{ is a partitioning or merging of } o_i.(T) \text{ for each } i = 1, \ldots, n - 1. \]

Proof. Write \(c = (c_1, \ldots, c_k) \). The proof proceeds by induction on \(k \). If \(k = 0 \), then \(c \) is empty, and the claim is trivial. So suppose the claim holds for all ordered covers whose length is less than \(k \); we must prove the claim holds for an arbitrary ordered cover \(c = (c_1, \ldots, c_k) \) with length \(k \). By the induction, the ordered cover \(c' = (c_1, \ldots, c_{k-1}) \) can be produced by a sequence of local cover operations. Moreover, since \(c_k \) is a subclass of \(T \), there obviously exists a sequence of partitionings that when applied to \(c'.(T) \) produces a cover \(c''.(c''_1, \ldots, c''_m, T) \) where \(c''_i = c_k \) and each \(c''_i \) is an immediate subclass of \(c''_{i+1} \). By merging the classes \(c''_2, \ldots, c''_m \), we complete the construction of the ordered cover \(c'.(c''_1, T) = c \) by means of a sequence of local cover operations, thereby proving the induction. \(\square \)

So far, we have described how HPM estimation can be used to model a single hierarchically structured random variable \(X \). However, in practice, we often need to estimate probability distributions over conditional random variables of the form \(X|Y \). We also need to deal with random vectors where only some of the random variables are hierarchically structured. For example, in a probabilistic language model, we might be interested in modelling dependencies as random vectors of the form \((D, L, N|H)\) where \(H \) is the head word, \(D \) is the dependent word, \(L \) is the dependency label, and \(N \) is the distance in time between head and dependent in the speech signal. To do this, we must be able to mix hierarchically organized categorical random variables with non-hierarchically organized random variables, such as continuous random variables.

Definition 5.42. A conditional random vector of the form \((X, C|X', C', E')\) is said to follow a conditional mixed HPM distribution (or XHPM distribution) if \(C, C' \) are hierarchically structured with hierarchies \(H, H' \), respectively, and there exists an ordered cover \(o = (o_1, \ldots, o_n) \) on \(H \times H' \) and a hidden random variable \(\Pi \) that maps an observation \((C, C')\) into the partition \(\pi_{o,i} \) containing \((C, C')\), such that \(E', (C, C'), X, \) and \(X' \) are mutually independent given \(\Pi \).

Proposition 5.43. Let \((X, C|X', C', E')\) be an XHPM distributed random vari-
5.3. Hierarchical Partition Models (HPMs and XHPMs)

able. Then:

\[P(X, X', C, C', E') = \sum_{\Pi} P(E') P(\Pi|E') P(C, C'|\Pi) P(X|\Pi) P(X'|\Pi) \]

and

\[P(X, C|X', C', E') = \frac{\sum_{\Pi} P(\Pi|E') P(C, C'|\Pi) P(X|\Pi) P(X'|\Pi)}{\sum_{\Pi} P(\Pi|E') P(C'|\Pi) P(X'|\Pi)}. \]

Proof. From Bayes’ law and our independence assumptions, we have:

\[
P(X, X', C, C', E', \Pi) = P(E') P(\Pi|E') P(C, C'|E', \Pi) P(X, X'|E', \Pi, C, C') = P(E') P(\Pi|E') P(C, C'|\Pi) P(X|\Pi) P(X'|\Pi).
\]

Since \(P(X, X', C, C', E') = \sum_{\Pi} P(X, X', C, C', E', \Pi) \), we consequently have:

\[
P(X, X', C, C', E') = \sum_{\Pi} P(E') P(\Pi|E') P(C, C'|\Pi) P(X|\Pi) P(X'|\Pi).
\]

By the definition of conditional probability, we have:

\[
P(X, C|X', C', E') = \frac{P(X, X', C, C', E')}{P(X', C', E')} = \frac{P(X, X', C, C', E')}{\sum_{X, C} P(X, X', C, C', E')}. \]

We simplify the denominator by calculating:

\[
\sum_{X, C} P(X, X', C, C', E') = \sum_{X, C, \Pi} P(E') P(\Pi|E') P(C, C'|\Pi) P(X|\Pi) P(X'|\Pi)
\]

\[
= P(E') \sum_{\Pi} P(\Pi|E') \sum_{C} P(C, C'|\Pi) \sum_{X} P(X|\Pi) P(X'|\Pi)
\]

\[
= P(E') \sum_{\Pi} P(\Pi|E') P(C'|\Pi) P(X'|\Pi)
\]

\[^2 \text{To keep the formulas as readable as possible, we use the notation } \sum_{\Pi} P(\Pi|E') \cdots P(X'|\Pi) \text{ as a short-hand for the more accurate notation: } \sum_{\pi \in \Omega_\Pi} P(\Pi = \pi|E') \cdots P(X'|\Pi = \pi). \]
since \(\sum_{C} P(C, C'\| \Pi) = P(C'\| \Pi) \) and \(\sum_{X} P(X\| \Pi) = 1 \). The second formula in the proposition arises by dividing \(P(X, X', C, C', E') \) with \(\sum_{X,C} P(X, X', C, C', E') \) and canceling out the common factor \(P(E') \).

Remark 5.44. Suppose we are given a data set \(d = \{ (x_i, c_i, x'_i, c'_i, e'_i) \}_{i=1}^{n} \) for an XHPM distributed random variable \((X, C, X', C', E')\) with classification hierarchies \(H, H' \) for \(C, C' \), prior distributions \(F_c, F_{c'}, F_x, F_{x'} \) for \(C', X, X' \), and estimation algorithms \(a, a' \) that given subsequences \(x_s, x'_s \) of \(x = \{ x_i \}_{i=1}^{n} \) and \(x' = \{ x'_i \}_{i=1}^{n} \) estimate distributions \(a(x_s) \) and \(a'(x'_s) \) for \(X \) and \(X' \). Given an ordered cover \(\sigma = (o_1, \ldots, o_n) \) on \(H \times H' \), we can use Proposition 5.43 to estimate distributions \(\hat{P}_{m, o, d}(X, C, X', C', E') \) and \(\hat{P}_{m, o, d}(X, C|X', C', E') \) for \((X, C, X', C', E')\) and \((X, C|X', C', E')\) by providing estimates for \(P(\Pi|E') \), \(P(C, C'\| \Pi) \), \(P(C'\| \Pi) \), \(P(X\| \Pi) \), and \(P(X'|\Pi) \); the predefined model parameters are encoded in \(m = (H, H', F_c, F_{c'}, F_x, F_{x'}, a, a') \).

We will assume that the random variable \(\Pi \) is defined in terms of the ordered cover \(\sigma \), i.e., \(\Pi \) maps an observation \((C, C')\) to the partition \(\pi_{o,i} \) containing \((C, C')\). This allows us to estimate the probability \(P(\Pi|E') \) empirically by means of:

\[
P(\Pi|E') = \frac{\#(\Pi, E')}{\#E'}
\]

where \(\#X \) denotes the number of times the random variable \(X \) has been observed with the given value.\(^3\)

We estimate \(P(C, C'\| \Pi) \) by means of:

\[
P(C, C'\| \Pi) = \frac{F^*(\Pi \cap (C, C'))}{F^*(\Pi)}
\]

where \(F^* \) is the distribution on the class algebra \((H \times H')^*\) induced by the distribution \(F(c, c') = F_c(c)F_{c'}(c') \) on \(H \times H' \) (cf. Remark 5.30). That is, the prior distributions \(F_c \) and \(F_{c'} \) on \(H \) and \(H' \) define a natural prior distribution \(F \) on \(H \times H' \), and \(P(C, C'\| \Pi) \) is the prior probability under \(F \) of observing \((C, C')\) given that \((C, C') \in \Pi \). Using \(F^* \), we can calculate:

\[
P(C'\| \Pi) = P(C \in T, C'\| \Pi) = \frac{F^*(\Pi \cap (T, C'))}{F^*(\Pi)}.
\]

\(^3\)For notational convenience, the notation \(P(\Pi|E') = \#(\Pi, E')/\#E' \) is used as a short-hand for the more accurate notation:

\[
P(\Pi \in \pi|E' \in e') = \frac{\#(\Pi \in \pi, E' \in e')}{\#(E' \in e')}
\].
The estimation algorithms a and a' can be used to construct estimates for $P(X|\Pi)$ and $P(X'|\Pi)$. The simplest method is to estimate $P(X|\Pi)$ and $P(X'|\Pi)$ by means of the estimators $a(x[\Pi])$ and $a'(x'[\Pi])$, where $x[\Pi]$ denotes all observations x_i in x where $(c_i, c'_i) \in \Pi$, and similarly for $x'[\Pi]$. But as has been pointed out in credibility theory (cf. Norberg 2004), this method is unreliable if there are few observations in Π. As has been pointed out in credibility theory (cf. Norberg 2004), this method is unreliable if there are few observations in Π, and it is better to use a convex combination of the prior distribution and the estimates computed from the data in the partition Π and the superclasses Π_1, \ldots, Π_k of Π (where $\overline{\Pi}_i$ denotes the union of partition Π_i and all its transitive subpartitions, and we define Π_{i+1} as the immediate super partition of Π_i, where $\Pi_1 = \Pi$ and $\Pi_k = \emptyset$). This method results in estimators:

$$ P(X|\Pi) = \epsilon_0a(x[\Pi]) + \epsilon_1a(x[\overline{\Pi}_1]) + \cdots + \epsilon_ka(x[\overline{\Pi}_k]) + \epsilon_{k+1}f_x $$

$$ P(X'|\Pi) = \epsilon_0a'(x'[\Pi]) + \epsilon_1a'(x'[\overline{\Pi}_1]) + \cdots + \epsilon_ka'(x'[\overline{\Pi}_k]) + \epsilon_{k+1}f_{x'} $$

where $\epsilon_i \in [0, 1]$ and $\epsilon_0 + \cdots + \epsilon_{k+1} = 1$. In Remark 5.45, we discuss how to select the weights $\epsilon_0, \ldots, \epsilon_{k+1}$. In this way, we have provided estimates for all the distributions that are needed to estimate $P(X, C, X', C', E')$ and $P(X, C|X', C', E')$.

Remark 5.45. Credibility theory (cf. Norberg 2004) states how to calculate the weights $\epsilon_0, \ldots, \epsilon_{k+1}$ from Remark 5.44 (called credibility factors in credibility theory) so that we minimize the mean squared error (MSE) of the estimator. Unfortunately, this calculation requires that X is a numerical random variable where the mean and variance of $X|\Pi$ are known to us in advance. In our general setting, these requirements are not necessarily fulfilled, because X may be a non-numerical random variable where the mean and the variance are undefined. We will therefore choose the credibility factors on the basis of the formula below (where n_0 is the number of observations in Π, and n_i is the number of observations in the superclass $\overline{\Pi}_i$), with the result that our estimator does not necessarily have minimal MSE when the MSE is well-defined:

$$ \epsilon_i = \begin{cases}
 w(n_0) & \text{if } i = 0 \\
 w(n_i) - w(n_{i-1}) & \text{if } i = 1, \ldots, k \\
 1 - w(n_k) & \text{if } i = k + 1
\end{cases} $$

The credibility weight function $w: [0, \infty) \rightarrow [0, 1]$ must be a monotonically increasing function with $w(0) = 0$ and $w(\infty) = 1$. For example, w could be
chosen to be a Champernowne distribution \(w(x) = x^\alpha / (x^\alpha + M^\alpha) \), whose parameters can be specified uniquely by means of the numbers \(n_{50} \) and \(n_{95} \) of observations that will result in the weights 0.5 and 0.95, respectively; we then have \(M = n_{50} \) and \(\alpha = \log 19 / (\log n_{95} - \log n_{50}) \). The numbers \(n_{50} \) and \(n_{95} \) must be chosen experimentally. As a reasonable starting point, we suggest \(n_{50} = 10 \) and \(n_{95} = 100 \).

Definition 5.46. Let \(d = \{(x_i, c_i, x'_i, c'_i, e'_i)\}_{i=1}^n \) be a dataset for an XHPM-distributed random variable \((X, C | X', C', E')\) with predefined model parameters \(m = (H, H', F_c, F_{c'}, F_x, F_{x'}, a, a', w, w') \). Given an ordered cover \(o \) on \(H \times H' \), the estimator \(\hat{F}_{m,o,d} = P(X, C | X', C', E') \) described in Remark 5.44 is called the XHPM estimator induced by the data \(d \) with parameters \(m \). The set \(M \) of parameters needed to compute \(\hat{F}_{m,o,d} \) is called the XHPM model associated with \(\hat{F}_{m,o,d} \), and we often write \(F_M \) instead of \(\hat{F}_{m,o,d} \).

Remark 5.47. In Remark 5.35, we described how to compute a parameter description length for an HPM model \(M \), and how the parameter description length gave rise to a prior MDL weight \(W_{MDL} \) on the set of HPM models. Similarly, we can define a prior MDL weight

\[
W_{MDL}(M) = \left(\sqrt{|d|} \right)^{-n_M}
\]

on the set of all XHPM models, where \(n_M \) denotes the number of free parameters in the model \(M \).\(^4\) By excluding all degenerate models (like in Definition 5.38), we get a bump-MDL prior weight for XHPM models, which yields a bump-MDL posterior weight if we multiply the bump-MDL prior weight with the likelihood of the data for the conditional random variable \((X, C | X', C', E')\). An XHPM model with optimal bump-MDL posterior weight is called an optimal bump-MDL estimate. As with HPM models, Proposition 5.41 shows that any optimal bump-MDL estimate can be constructed by means of a sequence of partitionings and mergings.

Remark 5.48. The HPM and XHPM models presented in this section can be seen as a generalization of Li and Abe’s (1998; 1999) work on MDL-
Based case frame learning. HPM and XHPM models are a generalization in the following respects: (1) Li and Abe assume that all words within a disjoint subset in a partition (tree cut) are uniformly distributed, whereas we avoid this assumption by introducing a prior distribution which can be used to specify an arbitrary distribution of words within each disjoint subset. (2) Li and Abe assume that the disjoint subsets in a partition must correspond to word classes, whereas we have introduced ordered covers in order to allow the disjoint subsets to correspond to both word classes and set differences between word classes and finite unions of word classes. (3) Li and Abe assume that the hierarchy must be a tree, whereas we allow the hierarchy to be a general directed acyclic graph. (4) Li and Abe mostly deal with the 1-dimensional case, and their tree cut model does not scale well to higher-dimensional cases where hierarchies tend to be difficult to represent as trees, whereas our method works for arbitrary (finite) dimensions. (5) XHPM models are a further generalization that makes it possible to mix hierarchical and non-hierarchical data, and to compute conditional probability distributions.

In this section, we have proposed two families of distributions, HPM models which can be used to model random variables whose outcomes can be organized in a classification hierarchy, and XHPM models which can be used to model conditional random vectors with a mixture of hierarchically organized random variables and random variables with arbitrary distributions. We have shown the essential role played by ordered covers in both HPM and XHPM models, and how ordered covers can be constructed by means of partitioning and merging operations. Finally, on the basis of the Minimum Description Length principle, we have proposed a prior model probability on the set of all HPM and XHPM models that can be used to identify optimal HPM or XHPM models for a given data set, i.e., HPM or XHPM models that optimize the posterior Bayesian probability of the model given the data set. In the following section, we will propose an algorithm that can be used to compute a near-optimal HPM or XHPM estimator for a given data set, using an algorithm based on local search.

5.4 Algorithm for HPM and XHPM estimation

Summary. We propose an algorithm based on first-improvement local search that often produces a near-optimal HPM or XHPM estimator for a given data set. The neighbour-
hoods in local search are defined by means of local merging operations and local partitioning operations with variable depth.

In general, the problem of finding a globally optimal HPM or XHPM estimator for a given data set seems to be very difficult — we suspect that it is NP-hard in the general case. This means that the best algorithm we can hope for is a heuristic algorithm that works well in most cases, at the risk of returning a suboptimal solution in some cases. As our algorithm, we can in principle use any heuristic search algorithm, including beam search, A^* search, or the many variants of local search. In this section, we will propose a heuristic algorithm based on first-improvement local search for finding a locally optimal HPM or XHPM model. In section 5.5, we will then present a simulation study that shows when our algorithm works well, and when it returns a suboptimal model. The algorithm is described below.

Algorithm 5.49. The find-bump-MDL-cover algorithm takes as its input a data set d and a collection m of HPM or XHPM model parameters, and returns an ordered cover whose induced HPM or XHPM model is locally optimal with respect to its bump-MDL posterior weight. The model parameters in m include hierarchies, prior densities, credibility weight functions and estimation algorithms for the different random variables in the random vector, as well as the parameter mincount which states the smallest number of observations that a partition is allowed to contain, and the parameter maxdepth which states the maximal search depth in the partition procedure.

The procedure find-bump-MDL-cover in Figure 5.9 uses first-improvement local search to find a locally optimal ordered cover. It starts with the ordered cover (T) — ie, its starting assumption is that the data follow the prior distribution — and then repeatedly improves its current cover by applying the first improvement it can find by either partitioning or merging a partition in the cover. When it fails to find a further improvement (ie, the current cover is locally optimal), it returns the current cover.

The procedure partition in Figure 5.10 searches for an improvement that can be obtained by partitioning a given partition in the ordered cover. The procedure divides the original cover into three parts: pre (which contains all partitions that precede the given partition), mid (which initially only consists of the given partition), and post (which contains all partitions that succeed the given partition). It then tries to find a subpartitioning of mid that improves the original cover. It does so by examining all immediate
5.4. Algorithm for HPM and XHPM estimation

```plaintext
procedure find-bump-MDL-cover(m, d)
begin
    m := model parameters (including priors, etc.);
    d := data;
    newcover := (T);
    while newcover ≠ null do
        cover := newcover;
        newcover := partition(m, d, cover, 1) || ... || partition(m, d, cover, |o|)
            || merge(m, d, cover, 1) || ... || merge(m, d, cover, |o| − 1);
    return cover;
end
```

Figure 5.9: The find-bump-MDL-cover procedure for finding a locally optimal MDL estimate by means of first-improvement local search.

subdivisions of the partitions in mid produced by the given hierarchies, and selecting the subdivision with the largest possible data count. It then determines whether the sanitized (non-degenerate) ordered cover that results from using the new mid improves the original cover. The partitioning procedure continues until it is impossible to subdivide mid further, until the maximal search depth has been exceeded, or until the new cover given by mid is an improvement over the old cover. The procedure returns the new improved cover, if one is found, or null if no improved cover is found.

The procedure merge in Figure 5.11 searches for an improvement that can be obtained by merging a given partition in the ordered cover. It returns the sanitized merged cover, if it improves the old cover, and null if it fails to be an improvement.

The procedure sanitize in Figure 5.12 modifies a given cover in order to ensure that it is non-degenerate. It does so by repeatedly merging the last degenerate partition in the cover, until the entire cover is non-degenerate.

Remark 5.50. In the partition procedure, we select subdivisions on the basis of their data count — an approach which is partly inspired by the patient peeling strategy described by Friedman and Fisher (1999). This approach forces the search to focus on regions with many observations, which are more likely to contain bumps than regions with few observations. In this process, the partition procedure may create some partitions that actually decrease the bump-MDL posterior weight; however, these suboptimal subdivisions can often be repaired by the merge operation at a later stage.
procedure partition\((m, d, cover, partition)\) begin
 \(m := \) model parameters (including priors, etc.);
 \(d := \) data;
 \(cover := \) current cover;
 \(partition := \) partition in \(cover\) to be partitioned;
 \(pre := \) all partitions in \(cover\) before partition \(partition\);
 \(mid := [cover[partition]]\);
 \(post := \) all partitions in \(cover\) after partition \(partition\);
 \(depth := m.\text{maxdepth}\);
 do
 \(nmax := 0\);
 for \(p := 1\) to \(|mid|\) do
 \(s := \) subclass of \(mid[p]\) with most observations;
 \(n := \) number of observations in \(s\);
 if \(n > nmax\) and \(n > m.\text{mincount}\) then
 \(nmax := n\);
 \(split := p\);
 \(subclass := s\);
 if \(nmax > 0\) then
 \(mid := mid\) with subclass inserted before partition \(split\);
 if sanitize\((m, d, pre + mid + post)\) improves \(cover\) then
 \(newcover := \) sanitize\((m, d, pre + mid + post)\);
 until \(nmax = 0\) or \(depth = 0\) or \(newcover \neq \) null;
 return \(newcover\);
end

Figure 5.10: The \texttt{partition} procedure for finding an improved partitioning of a given partition by means of first-improvement local search.

An alternative criterion is to use variable-depth local search, ie, to select a subdivision that maximizes the bump-MDL posterior weight rather than the data count. We have tried this approach, but it works poorly. The reason is that in order to arrive at an improvement that requires more than one subdivision, the algorithm often has to apply subdivisions that temporarily result in a large degradation of the bump-MDL posterior weight. Unfortunately, instead of using the correct, but costly subdivision, the algorithm is usually able to find a spurious subdivision that involves very few observations and therefore only leads to a very small degradation, even
5.4. Algorithm for HPM and XHPM estimation

Algorithm for HPM and XHPM estimation

Procedure merge

```plaintext
procedure merge(m, d, cover, partition) begin
  m := model parameters (including priors, etc.);
  d := data;
  cover := current cover;
  partition := partition in cover to be merged;
  newcover := cover with partition partition deleted;
  if sanitize(m, d, newcover) improves cover then
    return sanitize(m, d, newcover);
  else
    return null;
end
```

Figure 5.11: The `merge` procedure for finding an improved cover by merging a given partition.

Procedure sanitize

```plaintext
procedure sanitize(m, d, cover) begin
  m := model parameters (including priors, etc.);
  d := data;
  cover := cover to be sanitized;
  while cover is degenerate do
    remove the last degenerate partition in cover;
  return cover;
end
```

Figure 5.12: The `sanitize` procedure for modifying a cover to ensure that it is non-degenerate.

though it is a wasted step in terms of getting closer to a real improvement.

A second alternative criterion is to select the subdivision that maximizes the *moved mass*, defined as the extra probability mass that a subdivision assigns to the new subpartition. We have tried this approach as well, and it suffers from the same problems as variable-depth local search.

Remark 5.51. The `find-bump-MDL-cover` procedure assumes that the parameter m includes all information needed to estimate an HPM or XHPM model from the data set and the ordered cover, and to compute the bump-MDL posterior weight for the data set in the resulting model. For HPM models, the procedure for computing an induced model from a data set, a cover,
and the given HPM model parameters is stated in Remark 5.33. For XHPM models, the corresponding procedure is stated in Remarks 5.44 and 5.45.

Remark 5.52. In the case where the hierarchy is a tree, Li and Abe (1998) have used dynamic programming to find a globally optimal MDL estimate. However, their solution does not address the general case where the hierarchy is a directed acyclic graph with a very large number of terminals, as in product and intersection hierarchies. As far as we can see, their dynamic programming algorithm does not work in this general setting.

Remark 5.53. The idea of using merging and partitioning operations to find a near-optimal solution is not new. For example, Belz (2002) has proposed an algorithm for learning PCFGs that uses merging and partitioning operations in order to improve an existing PCFG. However, her approach is different from ours in most other respects. For example, she uses a variant of beam search to find a PCFG with an optimal F-score, and as partitions, she uses classes rather than set differences between classes and finite unions of classes.

In this section, we have described our heuristic algorithm for finding a near-optimal HPM or XHPM model. In the following section, we evaluate how well our algorithm works by means of a simulation study.

5.5 Empirical evaluation of HPM estimation

Summary. We evaluate how well our heuristic HPM estimation algorithm works by means of a simulation study. From a wide range of different two-dimensional distributions on the unit square $[0, 1] \times [0, 1]$, we generate data sets of different size, and measure the distance between the true model and the HPM estimate produced from the data. We also show how dependency relations can be interpreted as distributions on the unit square.

In order to assess the quality of our statistical estimation method, we need to test it on data where we know the true underlying distribution so that we can compare the estimated distribution with the true distribution and get a precise measure of the error and the rate of convergence. Since we do not know the true distribution of treebank data, it is convenient to test the method on random data that have been generated from a known distribution, such as a distribution on the unit square $[0, 1] \times [0, 1]$.
Remark 5.54. The different steps of the simulation are shown in Figure 5.13. From a predefined true distribution (shown left), we generate a random data set with \(n \) observations (middle left). From this data set, the heuristic HPM estimation algorithm computes an HPM distribution (middle right) and an associated ordered cover (right) with near-optimal posterior bump-MDL weight. The random variation in the data sets leads to slight variations in the HPM estimates produced by the HPM estimation algorithm, so in order to measure the estimation error reliably, the simulation procedure is repeated 10 times. We can create a visualization of the “typical” HPM estimate by ranking the 10 estimates with respect to \(L_2 \) error (cf. Definition 5.56), and drawing the estimate with median \(L_2 \) error (ie, the 5th best estimate).

To make it easier to visualize the distributions, we have tested the algorithm on a wide range of distributions on the unit square \([0, 1] \times [0, 1]\). The distributions are chosen to be easily recognizable geometric patterns, so that estimation errors are spotted easily. The distributions are defined formally below.

Definition 5.55. We define the following families of distributions on the unit square \([0, 1] \times [0, 1]\). Examples of the five kinds of distributions are shown in Figure 5.14.

- **C\(n:p\):** the unit box is divided into two uniformly distributed areas: a centered square with side length \(1/n \) containing probability mass \(p \), and the remaining part of the unit box containing probability mass \(1 - p \).
- **D\(n:p\):** the unit box is divided into two uniformly distributed areas: a single diagonal with \(n \) squares with side length \(1/n \) containing
probability mass \(p \), and the remaining part of the unit box containing probability mass \(1 - p \).

- **X\(_n\)::p**: the unit box is divided into two uniformly distributed areas: two diagonals consisting of \(2n - 1 \) squares with side length \(1/n \) containing probability mass \(p \), and the remaining part of the unit box containing probability mass \(1 - p \).

- **P\(_n\)::p**: the unit box is divided into two uniformly distributed areas: two centered horizontal and vertical bars with widths \(1/n \) containing probability mass \(p \), and the remaining part of the unit box containing probability mass \(1 - p \).

- **M\(_m\)::n::p**: the unit box is divided into two uniformly distributed areas: an area containing probability mass \(p \) and consisting of all boxes \([i/n, (i + 1)/n] \times [j/n, (j + 1)/n] \) with \(i, j = 0, \ldots, n - 1 \) where \(i + j \) is a multiple of \(m \), and the remaining part of the unit box containing probability mass \(1 - p \).

When comparing the true distribution with the HPM estimate, it is convenient to have a measure of the estimation error. The \(L_1 \) and \(L_2 \) norms are often used as error measures for this purpose.

Definition 5.56. The \(L_n \) distance between two distributions \(f \) and \(f' \) on a space \(S \) is defined as

\[
L_n(f, f') = \sqrt[n]{\int_S |f(s) - f'(s)|^n \, ds}.
\]

In the simulations, we must define some kind of hierarchy on the unit square. We have used an infinite 3-based hierarchy where every class can be subdivided into three equally large immediate subclasses either vertically or horizontally, i.e., every class has six partly overlapping immediate classes.

![Figure 5.14: The different families of distributions used in our simulation.](image)
5.5. Empirical evaluation of HPM estimation

subclasses. In this setting, it is interesting to test how well the HPM estimation algorithm performs when the hierarchy is compatible with the true distribution, and how well it performs when the hierarchy is incompatible — ie, to test how a bad choice of hierarchy affects the estimation. As our prior distribution, we have used the uniform distribution. We have tested the algorithm on a wide range of distributions, using random samples with 10, 30, 100, 300, 1,000, 3,000, 10,000, and 30,000 observations.

Remark 5.57. Figure 5.15 is a visualization of the typical HPM estimates (ie, HPM estimates with median L_2 error) produced by the HPM estimation algorithm for data sets with different sample sizes, generated from distributions that are compatible with the 3-based hierarchy used in the HPM estimation algorithm (with maximal search depth 20, and minimal partition count 5). Likewise, Figure 5.16 is a visualization of the typical HPM estimates for the distributions that are incompatible with the 3-based hierarchy. Figure 5.17 and 5.18 show the mean L_1 and L_2 errors, and the associated standard deviations.

From the L_1 and L_2 errors, we see that the estimates seem to eventually converge towards the true distribution, both for distributions that are compatible with the hierarchy and for distributions with an incompatible hierarchy — but the convergence is significantly slower for distributions with an incompatible hierarchy (as with the 5-based distributions).

The distributions C3:90% and C9:90% show that the algorithm can produce reliable HPM estimates with as little as 10 observations, even in the presence of 10% background noise, if the shape of the distribution is sufficiently simple — ie, if the distribution contains a single high-density class, regardless of the size of the class (this result also holds for C27:90%). If most of the observations are concentrated in a single class (as in C5:90%), 10 observations are enough for the HPM estimation algorithm to zoom in on that class.

More generally, if the hierarchy is compatible with the true ordered cover, the estimation algorithm seems to require approximately 10–20 observations within each true partition in order to guess most of the partitions in the true ordered cover. Thus, the estimation becomes reasonably reliable at approximately 10 observations for C3:90% and C9:90%, at 30 observations for D3:90%, at 100 observations for X3:90%, and at 300 observations for X9:90%. If the hierarchy is incompatible with the true ordered cover, the estimation algorithm will produce increasingly more accurate
Figure 5.15: HPM estimates with median L_2 error of distributions that are compatible with the hierarchy, with different sample sizes.
5.5. Empirical evaluation of HPM estimation

<table>
<thead>
<tr>
<th></th>
<th>C5</th>
<th>D5</th>
<th>X5</th>
<th>P5</th>
<th>IP5</th>
</tr>
</thead>
<tbody>
<tr>
<td>true</td>
<td></td>
</tr>
<tr>
<td>10</td>
<td></td>
</tr>
<tr>
<td>30</td>
<td></td>
</tr>
<tr>
<td>100</td>
<td></td>
</tr>
<tr>
<td>300</td>
<td></td>
</tr>
<tr>
<td>1,000</td>
<td></td>
</tr>
<tr>
<td>3,000</td>
<td></td>
</tr>
<tr>
<td>10,000</td>
<td></td>
</tr>
<tr>
<td>30,000</td>
<td></td>
</tr>
</tbody>
</table>

Figure 5.16: HPM estimates with median L_2 error of distributions that are incompatible with the hierarchy, with different sample sizes.
<table>
<thead>
<tr>
<th>n</th>
<th>C3:90%</th>
<th>C9:90%</th>
<th>D3:90%</th>
<th>X3:90%</th>
<th>X9:90%</th>
</tr>
</thead>
<tbody>
<tr>
<td>10</td>
<td>0.522 (0.128)</td>
<td>0.698 (0.132)</td>
<td>1.115 (0.054)</td>
<td>0.675 (0.019)</td>
<td>1.348 (0.073)</td>
</tr>
<tr>
<td>30</td>
<td>0.310 (0.188)</td>
<td>0.347 (0.109)</td>
<td>0.426 (0.214)</td>
<td>0.605 (0.164)</td>
<td>1.180 (0.070)</td>
</tr>
<tr>
<td>100</td>
<td>0.109 (0.072)</td>
<td>0.115 (0.098)</td>
<td>0.206 (0.096)</td>
<td>0.318 (0.083)</td>
<td>0.759 (0.072)</td>
</tr>
<tr>
<td>300</td>
<td>0.038 (0.021)</td>
<td>0.059 (0.029)</td>
<td>0.090 (0.041)</td>
<td>0.121 (0.042)</td>
<td>0.272 (0.055)</td>
</tr>
<tr>
<td>1,000</td>
<td>0.018 (0.024)</td>
<td>0.020 (0.013)</td>
<td>0.054 (0.029)</td>
<td>0.066 (0.021)</td>
<td>0.109 (0.020)</td>
</tr>
<tr>
<td>3,000</td>
<td>0.009 (0.007)</td>
<td>0.005 (0.005)</td>
<td>0.028 (0.015)</td>
<td>0.045 (0.011)</td>
<td>0.058 (0.011)</td>
</tr>
<tr>
<td>10,000</td>
<td>0.004 (0.004)</td>
<td>0.005 (0.003)</td>
<td>0.011 (0.007)</td>
<td>0.018 (0.006)</td>
<td>0.038 (0.004)</td>
</tr>
<tr>
<td>30,000</td>
<td>0.003 (0.002)</td>
<td>0.004 (0.002)</td>
<td>0.007 (0.002)</td>
<td>0.010 (0.003)</td>
<td>0.018 (0.002)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>n</th>
<th>C5:90%</th>
<th>D5:90%</th>
<th>X5:90%</th>
<th>P5:90%</th>
<th>P5:10%</th>
</tr>
</thead>
<tbody>
<tr>
<td>10</td>
<td>1.253 (0.112)</td>
<td>1.400 (0.002)</td>
<td>1.076 (0.009)</td>
<td>0.878 (0.097)</td>
<td>0.544 (0.090)</td>
</tr>
<tr>
<td>30</td>
<td>1.008 (0.115)</td>
<td>1.155 (0.093)</td>
<td>1.060 (0.037)</td>
<td>0.704 (0.065)</td>
<td>0.554 (0.086)</td>
</tr>
<tr>
<td>100</td>
<td>0.606 (0.096)</td>
<td>1.008 (0.065)</td>
<td>1.039 (0.053)</td>
<td>0.527 (0.060)</td>
<td>0.479 (0.062)</td>
</tr>
<tr>
<td>300</td>
<td>0.327 (0.060)</td>
<td>0.707 (0.070)</td>
<td>0.731 (0.049)</td>
<td>0.281 (0.084)</td>
<td>0.362 (0.048)</td>
</tr>
<tr>
<td>1000</td>
<td>0.184 (0.027)</td>
<td>0.376 (0.039)</td>
<td>0.527 (0.034)</td>
<td>0.138 (0.034)</td>
<td>0.184 (0.024)</td>
</tr>
<tr>
<td>3000</td>
<td>0.099 (0.020)</td>
<td>0.236 (0.013)</td>
<td>0.315 (0.023)</td>
<td>0.100 (0.027)</td>
<td>0.123 (0.012)</td>
</tr>
<tr>
<td>10000</td>
<td>0.049 (0.015)</td>
<td>0.109 (0.008)</td>
<td>0.171 (0.005)</td>
<td>0.040 (0.009)</td>
<td>0.074 (0.007)</td>
</tr>
<tr>
<td>30000</td>
<td>0.022 (0.003)</td>
<td>0.061 (0.003)</td>
<td>0.084 (0.003)</td>
<td>0.017 (0.004)</td>
<td>0.029 (0.004)</td>
</tr>
</tbody>
</table>

Figure 5.17: L_1 errors: mean error and standard deviation (in parentheses)

<table>
<thead>
<tr>
<th>n</th>
<th>C3:90%</th>
<th>C9:90%</th>
<th>D3:90%</th>
<th>X3:90%</th>
<th>X9:90%</th>
</tr>
</thead>
<tbody>
<tr>
<td>10</td>
<td>0.830 (0.204)</td>
<td>3.152 (0.597)</td>
<td>1.220 (0.033)</td>
<td>0.730 (0.047)</td>
<td>1.704 (0.016)</td>
</tr>
<tr>
<td>30</td>
<td>0.622 (0.512)</td>
<td>1.757 (1.025)</td>
<td>0.646 (0.350)</td>
<td>0.787 (0.308)</td>
<td>1.611 (0.043)</td>
</tr>
<tr>
<td>100</td>
<td>0.174 (0.113)</td>
<td>0.582 (0.628)</td>
<td>0.457 (0.234)</td>
<td>0.559 (0.113)</td>
<td>1.374 (0.165)</td>
</tr>
<tr>
<td>300</td>
<td>0.065 (0.034)</td>
<td>0.251 (0.147)</td>
<td>0.173 (0.085)</td>
<td>0.241 (0.201)</td>
<td>0.816 (0.133)</td>
</tr>
<tr>
<td>1,000</td>
<td>0.042 (0.075)</td>
<td>0.084 (0.047)</td>
<td>0.083 (0.053)</td>
<td>0.090 (0.022)</td>
<td>0.288 (0.053)</td>
</tr>
<tr>
<td>3,000</td>
<td>0.014 (0.011)</td>
<td>0.022 (0.020)</td>
<td>0.051 (0.031)</td>
<td>0.065 (0.017)</td>
<td>0.147 (0.033)</td>
</tr>
<tr>
<td>10,000</td>
<td>0.007 (0.007)</td>
<td>0.022 (0.015)</td>
<td>0.019 (0.014)</td>
<td>0.029 (0.013)</td>
<td>0.093 (0.013)</td>
</tr>
<tr>
<td>30,000</td>
<td>0.005 (0.003)</td>
<td>0.016 (0.011)</td>
<td>0.012 (0.004)</td>
<td>0.015 (0.006)</td>
<td>0.048 (0.006)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>n</th>
<th>C5:90%</th>
<th>D5:90%</th>
<th>X5:90%</th>
<th>P5:90%</th>
<th>P5:10%</th>
</tr>
</thead>
<tbody>
<tr>
<td>10</td>
<td>3.665 (0.053)</td>
<td>1.766 (0.020)</td>
<td>1.133 (0.016)</td>
<td>1.041 (0.072)</td>
<td>0.603 (0.143)</td>
</tr>
<tr>
<td>30</td>
<td>3.348 (0.265)</td>
<td>1.673 (0.123)</td>
<td>1.157 (0.052)</td>
<td>0.961 (0.193)</td>
<td>0.616 (0.149)</td>
</tr>
<tr>
<td>100</td>
<td>2.674 (0.306)</td>
<td>1.669 (0.175)</td>
<td>1.160 (0.052)</td>
<td>0.817 (0.118)</td>
<td>0.565 (0.099)</td>
</tr>
<tr>
<td>300</td>
<td>1.911 (0.278)</td>
<td>1.374 (0.124)</td>
<td>1.059 (0.057)</td>
<td>0.594 (0.099)</td>
<td>0.501 (0.079)</td>
</tr>
<tr>
<td>1000</td>
<td>1.422 (0.192)</td>
<td>1.005 (0.083)</td>
<td>0.844 (0.051)</td>
<td>0.364 (0.080)</td>
<td>0.353 (0.036)</td>
</tr>
<tr>
<td>3000</td>
<td>0.880 (0.135)</td>
<td>0.698 (0.028)</td>
<td>0.624 (0.025)</td>
<td>0.283 (0.080)</td>
<td>0.256 (0.008)</td>
</tr>
<tr>
<td>10000</td>
<td>0.486 (0.145)</td>
<td>0.417 (0.016)</td>
<td>0.418 (0.011)</td>
<td>0.158 (0.045)</td>
<td>0.187 (0.011)</td>
</tr>
<tr>
<td>30000</td>
<td>0.246 (0.046)</td>
<td>0.259 (0.010)</td>
<td>0.250 (0.024)</td>
<td>0.053 (0.025)</td>
<td>0.093 (0.009)</td>
</tr>
</tbody>
</table>

Figure 5.18: L_2 errors: mean error and standard deviation (in parentheses)
5.5. Empirical evaluation of HPM estimation

<table>
<thead>
<tr>
<th>true</th>
<th>300</th>
<th>1,000</th>
<th>3,000</th>
<th>10,000</th>
<th>30,000</th>
</tr>
</thead>
<tbody>
<tr>
<td>(L_1) error:</td>
<td>0.702 (0.267)</td>
<td>0.318 (0.164)</td>
<td>0.272 (0.124)</td>
<td>0.110 (0.058)</td>
<td>0.087 (0.039)</td>
</tr>
<tr>
<td>(L_2) error:</td>
<td>1.065 (0.223)</td>
<td>0.625 (0.225)</td>
<td>0.568 (0.203)</td>
<td>0.296 (0.137)</td>
<td>0.280 (0.104)</td>
</tr>
</tbody>
</table>

Figure 5.19: The HPM estimates for M3:9:90\%, a pathological distribution that is uniform down to depth 4, and the associated \(L_1 \) and \(L_2 \) mean error and standard deviation.

approximations to the true ordered cover.

While our algorithm seems to converge towards the true distribution for all distributions we have tested, it is possible to find distributions where the algorithm is being tricked into returning a suboptimal solution.

Remark 5.58. The property that seems to cause most problems in our estimation algorithm, apart from incompatible hierarchies, is apparent uniformity — ie, distributions that appear to be uniform down to a certain depth. For example, Figure 5.19 shows the estimates for a true distribution that is uniform down to depth 4, ie, where all classes in the hierarchy that can be obtained from the unit square by at most three subdivisions appear to have the same density.

The estimates seem to converge slowly towards the true distribution, but the apparent uniformity seems to make the convergence much slower than usually seen because of two kinds of inadequate partitioning. First of all, the uniformity means that the partition procedure tries to partition the space in a breadth-first manner, ie, it starts by partitioning the unit square into 3 depth 1 subspaces, then 9 depth 2 subspaces, then 27 depth 3 subspaces etc. As a consequence, it may reach the maximal search depth before it reaches a depth 4 subspace where it can detect the non-uniformity. Secondly, because of the uniformity, the partition procedure may inadvertently choose the wrong subpartitioning — eg, instead of creating a small square, it creates a beam with the same area that is too long vertically, but too short horizontally. These beams are clearly visible in all of the HPM estimates produced by the algorithm for M3:9:90\%.

The second problem can probably be fixed by introducing an abstraction operation that tries to successively replace a class with each of its
immediate superclasses, replacing the class with the best superclass if an improvement is possible. This will probably not lead to significantly improved estimates for the other, non-pathological families of distributions that we have tested, but it is conceivable that it may lead to improved estimates for complex treebank distributions, with a large enough improvement to justify the increase in computing time.

On the distributions where we have tested our algorithm, it seems to perform well. However, it is difficult to determine how well it performs for distributions with very different distributions, priors, hierarchies, etc.

Remark 5.59. So far, we have only tested the estimation algorithm on distributions on the two-dimensional unit square, using a simple hierarchy. These tests can be extended in many directions. First of all, instead of using the same probabilities in all the boxes in the C, D, X, P, and M families of distributions, we could use different probabilities in each box — we have tried this, and it only seems to make the estimation converge faster, which is not so surprising, given that apparent uniformity is the most difficult case to handle for the algorithm. We could also try to increase or decrease the amount of background noise in the distributions — we have tried this, and unsurprisingly, the amount of data needed to keep the error below a certain level increases with the signal-noise ratio. We could also try to increase the dimensionality — we have not tried this, but we suspect that dimensionality is not an overly important factor with this algorithm: what matters is the search depth, and the number of partitions needed to encode the true distribution. Finally, we could try using different hierarchies and prior distributions (eg, hierarchies where the immediate subclasses of a class have very different prior mass) — we have not tried this, but these choices are likely to influence the quality of the estimation, although it is difficult to predict how. We have not had the time to look into these questions, but we plan to address them when we have reimplemented the learning algorithm.

Remark 5.60. Two-dimensional distributions on the unit square may seem far removed from treebank distributions. However, the difference is not as big as it may seem at first sight. Figure 5.20 shows the observed distribution of head-dependent pairs in subj and vobj dependencies in the Danish Dependency Treebank. The horizontal axis represents the word class of the head in the dependency relation, and the vertical axis represents
5.5. Empirical evaluation of HPM estimation

Figure 5.20: The observed distribution of subj and vobj dependencies in the Danish Dependency Treebank.

Figure 5.21: The hierarchy of PAROLE word classes used in Figure 5.20.

the word class of the dependent in the dependency relation. The word classes are grouped together by means of the word class hierarchy in Figure 5.21, which is based on the Danish PAROLE word classes (cf. Keson and Norling-Christensen 1998). This word class hierarchy is shown in compact form along the axes in Figure 5.20, and the width of the interval representing each word class is chosen so that it is proportional to the frequency of the word class in the treebank (eg, the length of the line representing the class “N” is approximately 35% of the length of the line representing the class “Word” because 35% of all words in the treebank are nouns). The frequency of each word-class pair is indicated with a coloured box and a frequency count, where dark colours represent high frequencies relative to the area of the box, and light colours represent low frequencies relative to
the area of the box. For example, the darkest box in the “vobj” graph is (VA,VA) (a normal verb taking a normal verb as its verbal object), a combination that has been observed 1,987 times in the treebank. In this way, the distribution for a dependency relation in the treebank can be viewed as a distribution on the unit square. In general, if we have a mapping of the random variables in a random vector to the interval $[0, 1]$, a random vector with n random variables can be viewed as a distribution on the n-dimensional unit box $[0, 1]^n$.

Figure 5.22 shows the observed distribution of the 12 most frequent dependencies in the Danish Dependency Treebank. When we look at the treebank data, we see that most observations are clustered within a relatively small number of word-class combinations, which provide a highly characteristic “finger print” for each dependency relation. For example, in the verbal object relation, there are 1,987 observations in (VA,VA) (a verb subcategorizing for a verb), 1,107 observations in (CS,VA) (a subordinating conjunction subcategorizing for a verb), 758 observations in (U=,VA) (infinitival marker “at” (“to”) subcategorizing for a verb), with the remaining 139 observations distributed among a small number of word-class combinations. Because of the small frequency counts, the learning algorithm will ignore the least frequent class combinations and analyze them as uniformly distributed noise. The nominal object and conjunct relations are more complicated than the verbal object relation, but again, the observations are clustered within relatively few word-class combinations, in a highly non-symmetric and non-uniform way that should be easy for our HPM estimation algorithm to learn.

In this section, we have tested our algorithm on a wide range of distributions on the unit square. The simulations have indicated that the algorithm usually converges towards the true distribution, but that the rate of convergence depends crucially on the quality of the hierarchy provided.

5 The number of observations divided by the area of the box is a measure of how many times more probable the word-class pair is, compared to the probability one gets by assuming that the head and dependent are chosen independently of each other, using the observed probability distribution of single word classes.

6 Some of the less frequent word-class combinations may represent “design errors” in the treebank. For example, the three occurrences of (NP,NP) (a proper noun subcategorizing for a proper noun) stem from English song titles like “You’ve Got to Hide Your Love Away,” which have received a normal dependency analysis in the treebank, although all the words have been tagged as “NP” in the original Danish PAROLE corpus.
Figure 5.22: Observed distribution of the 12 most frequent dependencies in the Danish Dependency Treebank.
to the learning algorithm: a good hierarchy allows the algorithm to zoom in on the true distribution quickly, whereas a bad hierarchy significantly increases the number of observations required for reliable estimation. We have seen that, as a rule of thumb, the algorithm requires approximately 10 observations within a partition before the partition appears in the ordered cover produced by our estimation algorithm. We have also tested the algorithm on distributions that seem to be uniform down to partition depth 4, and seen that the algorithm can cope with them, but that they do present a challenge to the algorithm. Finally, we have seen that we can often define a mapping from the space of outcomes of a random variable to the interval $[0, 1]$, so that most n-dimensional random vectors (including random vectors for treebank data) can be viewed as distributions on the n-dimensional unit box $[0, 1]^n$.

5.6 Summary

In this chapter, we have presented an algorithm for estimating probability distributions from both categorical and continuous data. In section 5.1, we outlined the main concepts in statistical estimation. In section 5.2, we defined our notion of hierarchies and how several hierarchies for the same variable can be combined into a single intersection hierarchy, and how hierarchies for the variables in a random vector can be combined into a single product hierarchy for the entire random vector. In section 5.3, we proposed HPM and XHPM models with ordered covers as models for hierarchically organized random variables with known hierarchies and prior distributions, including conditional random vectors containing mixtures of hierarchically organized and continuous random variables, and we introduced the Minimal Description Length principle for selecting an optimal model. In section 5.4, we proposed a heuristic algorithm based on local search that can compute an HPM or XHPM estimate for a given data set, given a set of model parameters containing hierarchies, prior distributions, etc. Finally, in section 5.5, we demonstrated that our algorithm performs well on a wide range of distributions on the unit square, and that distributions for dependency relations in treebanks can be transformed into distributions on the unit square.

In the following chapter, we will introduce a formal language that can be used to define probabilistic language models by specifying how data are
extracted from treebanks, and how they should be modelled statistically by means of HPM and XHPM distributions, and other statistical distributions.
Chapter 5. Statistical estimation with hierarchical partition models
Chapter 6

Probabilistic language models

In this chapter, we describe how DG can be combined with probabilistic language models. In section 6.1, we define a formal language that can be used to specify probabilistic language models in DG. In section 6.2, we propose a probabilistic language model for DG that models most of the linguistic aspects described in chapters 2–4.

6.1 Specifying probabilistic language models

Summary. We define a modelling language that can be used to specify probabilistic language models in DG. We describe the primitives in the modelling language for specifying submodels, extracting submodel data from the DG graph, computing probabilities, and specifying the underlying model parameters such as the choice of probability distribution, hierarchies, prior distribution, credibility weights, and smoothing.

Instead of hard-coding a particular probabilistic language model into the DG system, we will provide a more general solution by defining a formal modelling language that can be used to specify arbitrary probabilistic language models within DG. This approach makes it easier to specify complex language models, experiment with different language models, and extend language models to new domains. A language model must perform three tasks: it must decompose a given graph into a set of observations of different conditional random vectors, it must estimate parameters for the conditional random vectors on the basis of the observations extracted from the graphs in a treebank, and it must compute the probability of a
given graph on the basis of the parameters estimated from the treebank.

We start by modelling the extracted data by means of augmentations, defined formally below, which consist of an ordinary graph where some of the nodes have been augmented with a unique identifier and a set of attribute-value pairs. These are used to translate the graph into an observation of a conditional random vector whose random variables correspond to the node attributes in the augmentation — ie, the random variables are identified uniquely by a node identifier and an attribute name. The augmentations also specify an optional set of attribute types for each node attribute which allows model parameters to be specified for classes of node attributes rather than individually for each node attribute.

Definition 6.1. An augmentation in a graph G is a tuple (G, N, I, A) such that N is a subset of the nodes in G, I is a function that maps a node $n \in N$ into a typed value of the form $I(n) = (i, t)$ where i is a unique identifier and t is a list of types associated with n, and A is a partial function that maps a node $n \in N$ and an attribute a into a typed value of the form $A(n, a) = (v, t)$ where v is a value and t is a list of attribute types associated with the attribute a in n.

Two augmentations of a graph G can be concatenated, provided they do not contain incompatible node identifiers or node attributes.

Definition 6.2. Let $\alpha_1 = (G, N_1, I_1, A_1)$ and $\alpha_2 = (G, N_2, I_2, A_2)$ be two augmentations of a graph G. We will say that α_1 and α_2 are incompatible if there exists a node $n \in N_1 \cap N_2$ such that $I_1(n) \neq I_2(n)$, or if there exists a node $n \in N_1 \cap N_2$ and an attribute a such that $A_1(n, a)$ and $A_2(n, a)$ are both defined, but unequal; α_1 and α_2 are called compatible otherwise. If α_1 and α_2 are compatible, we define their concatenation $\alpha = (G, N, I, A)$ by $N = N_1 \cup N_2$, by letting $I(n)$ equal $I_1(n)$ or $I_2(n)$ (whichever is defined), and by letting $A(n, a)$ equal $A_1(n, a)$ or $A_2(n, a)$ (whichever is defined).

We can now define a submodel of a probabilistic language model as a tuple consisting of an extraction procedure, an estimation procedure, and an evaluation procedure.

Definition 6.3. A submodel is a tuple $s = (\text{Ext}_s, \text{Est}_s, \text{Prob}_s)$ where (a) Ext_s is an extraction procedure that given a graph G and a node n computes a set $\text{Ext}_s(G, n)$ of augmentations extracted from G at n; (b) Est_s is an estimation procedure that given a set α of augmentations computes a set of model parameters $\pi_s(\alpha) = \text{Est}_s(\alpha)$; and (c) Prob_s is an evaluation procedure that given a set
6.1. Specifying probabilistic language models

of parameters π and an augmentation a computes a probability $\text{Prob}_{s,\pi}(a)$. Given a treebank T, we define $\text{Prob}_{s,T} = \text{Prob}_{s,\pi(T)}$ with model parameters $\pi(T)$ given by

$$\pi(T) = \text{Est}_s \left(\bigcup_{G \in T} \bigcup_{n \in G} \text{Ext}_s(G,n) \right),$$

and we define the probability associated with a node n in G by:

$$\text{Prob}_{s,T}(G,n) = \prod_{a \in \text{Ext}_s(G,n)} \text{Prob}_{s,T}(a).$$

In a probabilistic language model, a graph is viewed as the result of a series of decisions taken during the generation of the graph, e.g., the choice of root words, complement frames, complements, adjuncts, landing sites, word order, fillers, etc. This means that a language model can be viewed as a set of submodels corresponding to the different kinds of decisions made during the generation of the graph.

Definition 6.4. A language model is a set $M = s_1, \ldots, s_k$ of submodels. Given a treebank T, the number $\text{Prob}_{M,T}(G,n)$ defined by

$$\text{Prob}_{M,T}(G,n) = \prod_{i=1}^{k} \text{Prob}_{s_i,T}(G,n)$$

is called the probability of n in G under the model M, and the number $\text{Prob}_{M,T}(G)$ defined by

$$\text{Prob}_{M,T}(G) = \prod_{n \in G} \text{Prob}_{M,T}(G,n)$$

is called the probability of G under the model M. The distribution $\text{Prob}_{M,T}(G)$ is called defective if it does not define a probability distribution on the set of all finite DG graphs, i.e., if it fails to integrate to 1 and assign a non-negative probability to all graphs.

In actual computations, it is convenient to make calculations with probabilities under a minus log transform (with base 10) in order to avoid numerical underflow. That is, instead of using multiplicative probabilities, we will use the corresponding additive costs.

Definition 6.5. The number

$$\text{Cost}_{s,T}(G,n) = -\log(\text{Prob}_{s,T}(G,n))$$
Chapter 6. Probabilistic language models

<table>
<thead>
<tr>
<th>Operator</th>
<th>Produces</th>
</tr>
</thead>
<tbody>
<tr>
<td>id((n, i, t))</td>
<td>augmentation assigning identifier (i) and types (t) to node (n)</td>
</tr>
<tr>
<td>attr((n, a, v, t, f))</td>
<td>augmentation that assigns attribute value (v) with attribute types (t) to the attribute (a) in node (n) with filter (f)</td>
</tr>
<tr>
<td>setof((x, s, \phi))</td>
<td>the union of all augmentations produced by the augmentation operator (\phi) when setting the variable (x) to some object matching the type specification (s)</td>
</tr>
<tr>
<td>concat((\phi))</td>
<td>augmentation consisting of the concatenation of all augmentations produced by (\phi)</td>
</tr>
<tr>
<td>(\phi \mid \psi)</td>
<td>union of augmentations in (\phi) and (\psi)</td>
</tr>
<tr>
<td>(\phi + \psi)</td>
<td>set of all augmentations concat((a \mid b)) with (a \in \phi) and (b \in \psi)</td>
</tr>
</tbody>
</table>

Figure 6.1: Augmentation operators used in extraction procedures.

is called the cost at \(n\) in \(G\) under submodel \(s\). Similarly,

\[
\text{Cost}_{s,T}(G) = - \log(\text{Prob}_{s,T}(G))
\]

is called the cost of \(G\) under submodel \(s\), and

\[
\text{Cost}_{M,T}(G) = - \log(\text{Prob}_{M,T}(G))
\]

is called the cost of \(G\) under the model \(M\).

We will now introduce the DG modelling language, which is used to specify language models, submodels, and their associated extraction procedures, estimation procedures, and evaluation procedures — including the choice of distribution, estimation method, prior distributions, hierarchies, credibility weights, smoothing, etc.

Specifying augmentations and augmentation filters

We start by defining the augmentation operators that are used to specify extraction procedures. The operators are summarized in Figure 6.1.

Definition 6.6. The operator \(id(n, i, t)\) is defined as follows: (a) if the type specifications \(n\) and \(i\) have a unique match, the operator returns the set \(\{\alpha\}\) consisting of the augmentation \(\alpha\) that assigns the identifier given by \(i\) and the types given by \(t\) to the node given by \(n\); (b) otherwise, the operator returns the empty set \(\emptyset\). The \(t\) argument is optional.
Definition 6.7. The operator \(\text{attr}(n, a, v, t, f) \) is defined as follows: (a) if the type specifications \(n \) and \(v \) have a unique match, the operator returns the set \(\{\alpha\} \) consisting of the augmentation \(\alpha \) that specifies that the attribute \(a \) for the node given by \(n \) has attribute types \(t \) and equals the value \(v \) after it has been filtered through the optional filter \(f \) (cf. Pseudocode 6.19); (b) otherwise, the operator returns the empty set \(\emptyset \). The \(t \) and \(f \) arguments are optional.

Definition 6.8. The operator \(\phi \mid \psi \) returns the union of the augmentation sets produced by \(\phi \) and \(\psi \).

Definition 6.9. The operator \(\text{setof}(x, s, \phi) \) returns the union \(A_1 \mid \ldots \mid A_k \) where \(A_i \) is the augmentation set produced by the expression \(\phi \) after the variable \(x \) has been set to the object \(s_i \), where \(s_1, \ldots, s_k \) are the objects matched by the type specification \(s \).

Definition 6.10. The operator \(\phi + \psi \) returns the augmentation set \(A \) consisting of the concatenation of all pairs \(a, b \), where \(a \) is some augmentation in the augmentation set produced by \(\phi \), and \(b \) is some augmentation in the augmentation set produced by \(\psi \).

Definition 6.11. The operator \(\text{concat}(\phi) \) returns the concatenation of all the augmentations in the augmentation set produced by \(\phi \).

The following examples show how augmentation operators can be used to extract different sets of augmentations from a graph.

Example 6.12. The expression below can be used to extract all triples consisting of a governor category, a complement role, and a complement category for a given node $node$.

\[
\begin{align*}
\text{id}(\text{head},$node$) \\
+ \ \text{attr}(\text{head}, \text{cat}, \text{val}(\text{cat},$node$)) \\
+ \ \text{setof}(\text{comp}, [\text{comp}$node$], \\
\text{id}(\text{comp},$comp$) \\
+ \ \text{attr}(\text{comp}, \text{crole}, \text{etype}([\text{comp}$comp$])) \\
+ \ \text{attr}(\text{comp}, \text{cat}, \text{val}(\text{cat},$comp$)))
\end{align*}
\]

When applied to the dependency graph in Figure 6.2 at the node “gave”, this expression produces the augmentations shown in Figure 6.3. The top layer in the graph indicates node identifiers, the second layer indicates attribute names, and the third layer indicates attribute values.
Example 6.13. The expression below can be used to extract the category and entire complement frame for a node \$node in a single augmentation, rather than extracting each individual complement dependency in a separate augmentation as in Example 6.12. The expression specifies that each complement node is labeled by its complement edge type, so there is no need to encode the complement edge type as an independent attribute.

\[
\begin{align*}
\text{id}(\text{head}, \$node) \\
+ \text{attr}(\text{head}, \text{cat}, \text{val}(\text{cat}, \$node)) \\
+ \text{concat}(\text{setof}(\$\text{comp}, [\text{_comp \$node}], \\
\quad \text{id}(\text{etype}(\$\text{comp}), \$\text{comp}) \\
\quad + \text{attr}(\text{etype}(\$\text{comp}), \text{cat}, \text{val}(\text{cat}, \$\text{comp}))))
\end{align*}
\]

When applied to the dependency graph in Figure 6.2 at the node “gave”, it produces the single augmentation shown in Figure 6.4.
6.1. Specifying probabilistic language models

Figure 6.4: Augmentation produced from Figure 6.2 by the extraction procedure in Example 6.13.

<table>
<thead>
<tr>
<th>Operator</th>
<th>Produces</th>
</tr>
</thead>
<tbody>
<tr>
<td>aug()</td>
<td>matches the input augmentation in an augmentation filter</td>
</tr>
<tr>
<td>subaug(n, a, φ)</td>
<td>subaugmentation of φ containing all nodes that match n and all attributes that match a</td>
</tr>
<tr>
<td>rename(n, n', φ)</td>
<td>augmentation φ where unique node matching n is renamed as n'</td>
</tr>
<tr>
<td>rename(n, a, a', φ)</td>
<td>augmentation φ where the attribute a is renamed as a' in all nodes matching n</td>
</tr>
</tbody>
</table>

Figure 6.5: Augmentation operators used in augmentation filters.

operators (shown in Figure 6.5) for extracting a subaugmentation from an augmentation and for renaming nodes and attributes in the augmentation.

Definition 6.14. The operator subaug(n, a, φ) returns the subaugmentation of the augmentation φ containing all attributes matching a at all nodes matching n.

Definition 6.15. The operator rename(n, n', φ) produces an augmentation φ' from the augmentation φ by renaming the unique node matching n as n'. The operator rename(n, a, a', φ) produces an augmentation φ' from the augmentation φ by renaming the unique attribute matching a as a' in all nodes matching n.

Example 6.16. Let \(A = [\text{head.cat}=\text{VA}, \text{comp.crole}=\text{subj}, \text{comp.cat}=\text{PI}] \) be the augmentation shown in Figure 6.3 (left). Then subaug(any, any, A) produces the subaugmentation A, subaug(any, cat, A) produces the subaugmentation [head.cat=VA, comp.cat=PI], and subaug(comp, any, A) produces the subaugmentation [comp.crole=subj, comp.cat=PI]. Similarly, the operator rename(comp, dep, A) produces the augmentation [head.cat=VA, dep.crole=subj, dep.cat=PI], and rename(any, cat, class, A) produces the augmentation [head.class=VA, comp.crole=subj, comp.class=PI].
Specifying language models and submodels

We will now describe how language models and submodels are specified in DG. The extraction procedure is specified by means of augmentation operators, and the estimation and evaluation procedures are specified by stating the underlying distributions, augmentation filters, prior distributions, etc. Submodels that are computed from other submodels without independent estimation of parameters are called complex submodels, whereas submodels that perform their own parameter estimation from the training data are called simple submodels or simply distributions.

Pseudocode 6.17. The command `distribution(name, vars, submodel)` specifies that the submodel specification `submodel` defines a simple submodel named `name` with input variables `vars`. The command `complex(name, vars, vardecls, submodel)` specifies that the submodel specification `submodel` defines a complex submodel named `name` with input variables `vars` and an optional list `vardecls` of variable declarations. The command `model(name, sm1, sm2, ...)` specifies that the submodels named `sm1`, `sm2`, etc. constitute a language model named `name`. The command `usemodel(name)` specifies that the language model named `name` is the current language model.

Language models and submodels are specified by stating their underlying extraction procedures, distributions, and other parameters. Some parameters are shared by all submodels, while other parameters only apply to specific distributions. We will now describe the parameters in detail.

Pseudocode 6.18. A submodel specification has the form `sm->par1...->parn`, where `sm` is a submodel type and `par1, ..., parn` are parameter specifications. The parameter specifications (a)–(b) below apply to all submodel types.

(a) `where(cond)`: the submodel only applies to nodes where the type specification `cond` is satisfied.
(b) `error.threshold.total(cost)`: indicate an error at the current node if the total cost produced by the submodel exceeds `cost`.

The parameter specifications (c)–(l) below apply to all distributions.

(c) `augmentation(vardecls, aug)`: use augmentation `aug` as extraction procedure, with variable declarations `vardecls`.
(d) `new(ntype, atype)`: attributes with type `atype` at nodes with type `ntype` are interpreted as new variables (ie, X variables) in the conditional random vector $X|Y$.
(e) \texttt{given}(ntype, atype): attributes with type \texttt{atype} at nodes with type \texttt{ntype} are interpreted as given variables (ie, \(Y\) variables) in the conditional random vector \(X|Y\).

(f) \texttt{hierarchy}(ntype, atype, hierarchy): attributes with type \texttt{atype} at nodes with type \texttt{ntype} are assigned hierarchy \texttt{hierarchy}.

(g) \texttt{train}(vardecls): if the first input variable is set to the current node, the remaining input variables in the training data set can be computed from the current node by means of vardecls.

(h) \texttt{trainwhere}(cond): train the distribution on nodes where the type specification \texttt{cond} is satisfied; defaults to the value of the \texttt{where} parameter.

(i) \texttt{feed}(dist, filter): add the augmentations produced by the augmentation filter \texttt{filter} to the training data for the distribution \texttt{dist}; the filter input consists of the training variables and augmentations used for this distribution.

(j) \texttt{prior}(submodel): use the complex submodel \texttt{submodel} as prior distribution for this distribution.

(k) \texttt{credibility	extunderscore function}(credfunc): use the function \texttt{credfunc} as a credibility function for this distribution; \texttt{credfunc} must map a data count in \([0, \infty]\) into a credibility weight in \([0, 1]\).

(l) \texttt{default}(ntype, atype, default): undefined attributes with type \texttt{atype} at nodes with type \texttt{ntype} are assigned default value \texttt{default}.

Pseudocode 6.19. The submodel type \texttt{empirical}() models an empirical distribution. In addition to the general parameters for distributions, it also supports the parameters (a)–(c) below, which allow the empirical distribution to function as a filter for unknown words (cf. Definition 6.7):

(a) \texttt{known	extunderscore mincount}(mincount): an outcome is marked as unknown if there are fewer than \texttt{mincount} observations of it.

(b) \texttt{known	extunderscore minprob}(minprob): an outcome is marked as unknown if it occurs with a probability smaller than \texttt{minprob}.

(c) \texttt{unknown	extunderscore marker}(marker): unknown outcomes are replaced by \texttt{marker}.

Pseudocode 6.20. The submodel type \texttt{hpm}() models a hierarchical partition model. In addition to the general parameters for distributions, it also supports the parameters (a)–(c) below:

(a) \texttt{partition	extunderscore mincount}(mincount): do not create partitions with fewer than \texttt{mincount} observations.
(b) partition_minprob(minprob): do not create partitions with a probability smaller than minprob.
(c) error_threshold_partition(cost): indicate an error at the current node if the cost corresponding to the choice of partition exceeds cost.

Pseudocode 6.21. The submodel type xhpm() models an XHPM distribution. In addition to the parameters for hpm distributions, it also supports the parameters (a)–(k) below:

(a) c(ntype, atype): attributes with type atype at nodes with type ntype belong to the variables C or C’ in the XHPM model.
(b) x(ntype, atype): attributes with type atype at nodes with type ntype belong to the variables X or X’ in the XHPM model.
(c) e(ntype, atype): attributes with type atype at nodes with type ntype belong to the variable E’ in the XHPM model.
(d) cnew_prior(ntype, atype, submodel): the complex submodel given by the submodel specification submodel is used as a prior distribution for each individual C variable with node type ntype and attribute type atype; if ntype and atype are omitted, then submodel is interpreted as a joint prior distribution for all C variables.
(e) cgiven_prior(ntype, atype, submodel): the complex submodel given by the submodel specification submodel is used as a prior distribution for each individual C’ variable with node type ntype and attribute type atype; if ntype and atype are omitted, then submodel is interpreted as a joint prior distribution for all C’ variables.
(f) xnew_prior(ntype, atype, submodel): the complex submodel given by the submodel specification submodel is used as a prior distribution for each individual X variable with node type ntype and attribute type atype; if ntype and atype are omitted, then submodel is interpreted as a joint prior distribution for all X variables.
(g) xgiven_prior(ntype, atype, submodel): the complex submodel given by the submodel specification submodel is used as a prior distribution for each individual X’ variable with node type ntype and attribute type atype; if ntype and atype are omitted, then submodel is interpreted as a joint prior distribution for all X’ variables.
(h) xnew_est(dist, filter): the distribution dist is used to estimate parameters for X, using augmentation filter filter.
(i) xgiven_est(dist, filter): the distribution dist is used to estimate parameters for X’, using augmentation filter filter.
6.1. Specifying probabilistic language models

(j) \texttt{xnew.cred(ntype, atype, credfunc)}: use the function \texttt{credfunc} as a credibility function for each individual \(X\) variable with node type \texttt{ntype} and attribute type \texttt{atype}; if \texttt{ntype} and \texttt{atype} are omitted, then \texttt{credfunc} is interpreted as a credibility function for all \(X\) variables.

(k) \texttt{xgiven.cred(credfunc)}: use the function \texttt{credfunc} as a credibility function for each individual \(X'\) variable with node type \texttt{ntype} and attribute type \texttt{atype}; if \texttt{ntype} and \texttt{atype} are omitted, then \texttt{credfunc} is interpreted as a credibility function for all \(X'\) variables.

\textbf{Pseudocode 6.22.} The submodel type \texttt{champ()} models a projective Champernowne distribution. Its augmentations must consist of a single attribute with a non-negative number as its value.

\textbf{Pseudocode 6.23.} The submodel type \texttt{egain()} models the expected gain in a Champernowne distribution. The probability produced by \texttt{egain()} depends on the time where the current node was added to the graph, the time where the last node was added to the graph, and the time of the last attempt to reanalyze the current node with respect to the cost function containing the call to \texttt{egain()}.

\textbf{Pseudocode 6.24.} A complex submodel is any expression of the form (a)–(f) described below:

(a) \texttt{number}: any number.
(b) \texttt{prob(smname, vars)}: the probability produced by the submodel named \texttt{smname} when applied to the input variables \texttt{vars}.
(c) \texttt{prob(smname, filter)}: the probability produced by the submodel named \texttt{smname} when applied to the augmentation produced by filter \texttt{filter}.
(d) \texttt{expr1 + expr2, expr1 - expr2, expr1 * expr2, expr1 / expr2}: the sum, difference, product, or quotient of any two complex submodels \texttt{expr1} and \texttt{expr2}.
(e) \texttt{sum(var, range, vardecls, expr)}: the sum of the probabilities produced by \texttt{expr} when setting the variable \texttt{var} to each of the objects matched by the type specification \texttt{range}; \texttt{vardecls} is an optional list of variable declarations computed from \texttt{var}.
(f) \texttt{product(var, range, vardecls, expr)}: the product of the probabilities produced by \texttt{expr} when setting the variable \texttt{var} to each of the objects matched by the type specification \texttt{range}; \texttt{vardecls} is an optional list of variable declarations computed from \texttt{var}.
In this section, we have defined a language for specifying probabilistic language models in DG with empirical distributions, HPM and XHPM distributions, projective Champernowne distributions, and arithmetic combinations of such distributions. We have also seen how extraction procedures can be specified by means of augmentation operations. In the following section, we will demonstrate how this model language can be used to specify a probabilistic language model for DG.

6.2 A probabilistic language model for DG

Summary. We propose a probabilistic language model for DG. Following Eisner (1996), Collins (1997), and Charniak (2000), we assume that the graph is created by a stochastic generative process that elicits probabilities at each choice point. We describe this process in detail and how it can be modelled by a probabilistic language model for DG.

In this section, we will propose a language model for DG inspired by the methodology proposed by Eisner (1996), Collins (1997), and Charniak (2000). We will follow these authors by formulating the language model generatively, ie, by describing the probability of the entire graph as a sequence of probabilities generated by different choices during the generation of the graph.\(^1\) Since DG is not context-free and must deal with both discontinuous word orders, fillers, gaps, and anaphora, our generative stochastic procedure differs from the context-free generative stochastic procedure proposed by these authors in most of the details, although the general philosophy is the same.

The generative stochastic procedure

Eisner (1996), Collins (1997), and Charniak (2000) assume that a context-free graph is generated by a top-down procedure which first creates the root node in the graph, and then recursively expands each newly created node by generating its context-free complements and adjuncts in inside-out order. We will follow this general methodology by assuming that DG graphs are generated by a top-down procedure which expands each newly

\(^1\)The generative model used for calculating the probability of a graph is a convenient way of specifying the statistical dependencies between different aspects of the graph. It does not say anything about how analyses are generated incrementally from a semantic representation when a speaker produces an utterance.
6.2. A probabilistic language model for DG

created node by identifying its landing site, its complements and adjuncts, its associated simple fillers and gapping fillers, its antecedents, etc. In order to account for partial analyses, we will also introduce a mechanism for generating deep roots.

The DG graph generation procedure is shown in Figure 6.6. We assume that the graph contains a formal top node TOP (cf. Remark 7.67), and that the graph is generated in two top-down passes starting at TOP: a primary top-down pass (shown in Figure 6.7) that generates landing sites, fillers, complements, non-punctuation adjuncts, and gapping conjuncts, and a secondary top-down pass (shown in Figure 6.8) that generates deep roots and punctuation marks, and identifies antecedents for anaphora. The order in which these steps occur is important because the choice made at a given step can be conditioned on all prior choices in the generation. In the following remarks, we will describe our reasons for some of these design decisions. We will then give a detailed description of the individual steps in the generative procedure and the associated probabilities.

Remark 6.25 (landing sites and word order). Since a node’s transitive governors constitute its potential landing sites, we cannot select a landing site for a node before all of its transitive governors have been generated. Moreover, when choosing a landing site for a node, the choice of landing site does not only depend on the landed node and the landing site, but also on the presence of other landed nodes at the landing site. In the generative process, it is therefore natural to assume that nodes are given landing sites in a top-down manner, that landed nodes are added to a landing site one by one, and that the probability of adding a new landed node depends on the previously added landed nodes at the landing site. We must therefore specify the order in which the nodes in the tree are created and given a landing site. We will return to this question in Remark 6.32.
Chapter 6. Probabilistic language models

 PRIMARY TOP-DOWN EXPANSION OF NODE
 1. Identify landing site
 1a. Identify landing site and relative word order
 2. Generate and expand complements and simple fillers
 2a. Select complement frame
 2b. Generate fillers
 2c. Consume or pass on fillers
 2d. Generate and expand complements
 3. Generate and expand non-punctuation adjuncts
 3a. Generate and expand non-punctuation adjuncts
 4. Generate and expand gaps
 4a. Generate and expand gapping conjuncts

Figure 6.7: The steps in the primary top-down expansion of a node in our stochastic graph generation procedure.

 SECONDARY TOP-DOWN EXPANSION OF NODE
 1. Generate and expand deep roots
 1a. Generate deep roots if node is at the right periphery
 1b. Generate primary expansion of deep roots
 2. Identify antecedents
 2a. Identify antecedents for anaphoric frames
 2b. Identify antecedents for missing complements
 3. Generate punctuation marks
 3a. Generate punctuation marks at node
 3b. Identify landing sites for punctuation marks
 4. Secondary top-down expansion of subnodes
 4a. Secondary top-down expansion of dependents left-right
 4b. Secondary top-down expansion of deep roots left-right

Figure 6.8: The steps in the secondary top-down expansion of a node in our stochastic graph generation procedure.

Remark 6.26 (fillers). In our top-down expansion of nodes, fillers are passed down from a node to its dependents, resembling the way Collins deals with long-distance extraction in his Model 3. This means that after a node has chosen its complement frame, it decides (a) whether it should create
any new fillers, (b) whether any of its inherited or newly created fillers should be used to satisfy a local complement or adjunct role, and (c) how it should pass on the remaining fillers to its complements and adjuncts. First when these decisions have been made, it starts generating its complements and adjuncts. In this way, the choice of complement and adjunct lexemes can depend on the set of fillers received from the governor.

Remark 6.27 (adjuncts). The choice of an adjunct is often syntactically or semantically constrained by the choice of complements. For example, the choice of a relative clause depends on the choice of relativized NP, the choice of a subject-oriented modifier depends on the choice of subject, etc. For this reason, it is reasonable to assume that the adjuncts at a node are created after all the complements have been created.

Remark 6.28 (gaps). Since a gap is essentially a copy of an entire subtree where at least two of the branches have been replaced with gapping dependents, the gap licensor should create all its other dependents before it creates any gapping conjuncts.

Remark 6.29 (deep roots). In order to account for analyses of partial input (cf. section 7.4), we will assume that a landing site at the right frontier of the graph can generate a set of temporary landed nodes that lack a governor. Being deep roots that are not yet incorporated into the dependency tree, it is natural to assume that these nodes are generated after all fillers, complements, adjuncts, and gaps have been generated.

Remark 6.30 (antecedents). When choosing one or more antecedents for an anaphor, we must determine the set of potential antecedents in the graph, compute a weight that quantifies their relative probability, and select the most probable antecedent. The relative probability of each antecedent depends on almost all other aspects of the graph: the deep path from anaphor to antecedent, the word order of the nodes on the path, the antecedents assigned to preceding anaphora, etc. (cf. Jurafsky and Martin 2000, pp. 671ff). For this reason, it is most natural to model anaphor resolution as a process that is carried out after the generation of the entire deep tree and surface tree in the graph.

Remark 6.31 (punctuation). In section 4.6, we saw that a punctuation mark at a higher node can satisfy the punctuation requirements of one or more lower nodes, and that a punctuation mark at a lower node only rarely
satisfies a punctuation mark at a higher node (cf. Remark 4.70). For this reason, in our generative stochastic model, punctuation marks at higher nodes should be created before punctuation marks at lower nodes. Moreover, since punctuation marks occur exclusively in written language, it is reasonable to assume that all other aspects of the graph are completely independent of the punctuation. For these reasons, we will assume that punctuation marking is performed as the last step in the secondary top-down expansion of a node.

Remark 6.32 (derivation ordering of subnodes). The probability of a graph is the sum of the probabilities of all its derivations. We can therefore simplify the computation of graph probabilities by ensuring that each graph has a unique derivation. In the DG language model, this can be achieved by defining a derivation ordering on the set of all nodes in the graph. This derivation ordering (which in general does not coincide with the linear ordering) can be constructed by assuming that each node imposes an ordering on its local complements, adjuncts, fillers, gapping fillers, gapping dependents, and deep roots. The local ordering can be used to define a global ordering on the entire graph if we assume that the nodes are visited in a top-down depth-first search with local node ordering, as illustrated in Figure 6.9. It is hard-coded in the DG language model that complements are always visited first, then adjuncts, gaps, and finally deep roots.

Since we can only condition a decision on the previous decisions in the derivation, the local derivation ordering at a node is important, at least to the extent that the language model is sophisticated enough to take advantage of knowledge about earlier decisions. However, within these bounds, there are many sensible orderings, and it will take some experimentation to identify the best ordering — an issue that we leave for further research.

One idea is to use a scope ordering based on the functor-argument application ordering in a semantically annotated graph. Another idea, which
we prefer because the Danish Dependency Treebank does not encode semantics and scope, is motivated by the desire to add landed nodes to their landing site in inside-out order, as in Collins (1997). Because DG graphs can be discontinuous, it is not possible to define a computationally feasible language model that ensures that landed nodes are always added in inside-out order, but we can ensure that landed nodes tend to be added in inside-out order by ordering dependent roles according to the average number of landed nodes at the landing site between the node and the landing site; we will refer to this ordering as *average proximity ordering*.

In the following, we will give a detailed description of the individual steps in the primary and secondary top-down expansion and the associated probabilities. The detailed DG encoding of the individual steps in the language model is listed in Appendix A.

Primary expansion 1a. Identify landing site and relative word order

The first step in the primary expansion of a node N (cf. submodel prila on p. 355) is to choose a landing site L for N among the transitive governors of N, and a linear ordering ω that indicates where N is placed in the landing field of L relative to the previously landed nodes at L. By assigning a probability weight $W_{\text{pri}1a}(L, \omega)$ to each choice of (L, ω), we can define a probability distribution $P_{\text{pri}1a}$ on (L, ω) by:

$$P_{\text{pri}1a}(L, \omega) = \frac{W_{\text{pri}1a}(L, \omega)}{\sum_{L, \omega} W_{\text{pri}1a}(L, \omega)}.$$

The probability weight $W_{\text{pri}1a}(L, \omega)$ must quantify how well-formed the choice is with respect to word order and island constraints in the extraction path. In order to capture these intuitions, we define $W_{\text{pri}1a}$ by:

$$W_{\text{pri}1a}(L, \omega) = P_{\text{worder}}(N|L, F^\omega, C_-^\omega, A_-^\omega, A_+^\omega, C_+^\omega) \cdot \prod_{\omega' \neq \omega} P_{\text{worder}}(\text{STOP}|L, F^{\omega'}, C_-^{\omega'}, A_-^{\omega'}, A_+^{\omega'}, C_+^{\omega'}) \cdot \min_{(I \rightarrow D) \in \text{ExtPath}(N)} \left(1, \frac{P_{\text{ldepext}}(D, I|N)}{P_{\text{ldep}}(D, I)}\right).$$

The first two factors quantify the word order probability. At position ω, we insert N with probability $P_{\text{worder}}(N|\ldots)$; at any other position ω' we
Figure 6.10: Training instances for P_{worder} generated from the landing frame “$\text{we}_{1}^\text{subj} \text{just}_{3}^\text{temp} \text{met}_{0}^\text{root} \text{him}_{2}^\text{dobj}$”.

insert the dummy node STOP with probability $P_{\text{worder}}(\text{STOP}|\ldots)$, in order to indicate that in this stage of the derivation, no nodes are inserted at these positions. The insertion of STOP at the alternative positions makes it possible to detect the absence of an obligatory landed node. The variables $(F_{\omega}, C_{\omega}, A_{\omega}, A_{\omega}^{+}, C_{\omega}^{+})$ indicate the word order context at ω: F_{ω} indicates whether ω is to the left or right of L, C_{ω} and C_{ω}^{+} are the immediately preceding and immediately following locally landed complements at ω, and A_{ω} and A_{ω}^{+} are the immediately preceding and immediately following landed nodes at position ω between C_{ω}^{+} and C_{ω}^{+}. That is, the local word order context at position ω is:

$$C_{\omega}^{+} \ldots A_{\omega}^{+} \omega A_{\omega} \ldots C_{\omega}^{+}$$

where L is either to the left or the right of all the nodes $C_{\omega}, A_{\omega}, A_{\omega}^{+}, C_{\omega}^{+}$.

When creating the training data for P_{worder}, we generate an instance of N for every landed node at L, and for any empty position between two landed nodes at L, ie, the phrase “we just met him” will generate the training data shown in Figure 6.10. The local word order context shown above is sufficient to rule out many incorrect word orders. For example, the context can be used to deduce that N is unlikely to be an adjunct or a direct object if it occurs before a subject C_{+}, or that N is unlikely to be a relative clause unless A_{+} and C_{+} are empty.

The third factor quantifies the probability of the extraction path by assigning a weight in $[0, 1]$ to each edge in the extraction path from N to L.

<table>
<thead>
<tr>
<th>L</th>
<th>F</th>
<th>C_{-}</th>
<th>A_{-}</th>
<th>N</th>
<th>A_{+}</th>
<th>C_{+}</th>
</tr>
</thead>
<tbody>
<tr>
<td>met$^{\text{root}^0}$</td>
<td>left</td>
<td>-</td>
<td>-</td>
<td>STOP</td>
<td>-</td>
<td>we$^{\text{subj}^1}$</td>
</tr>
<tr>
<td>met$^{\text{root}^0}$</td>
<td>left</td>
<td>-</td>
<td>-</td>
<td>we$^{\text{subj}^1}$</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>met$^{\text{root}^0}$</td>
<td>left</td>
<td>we$^{\text{subj}^1}$</td>
<td>-</td>
<td>STOP</td>
<td>just$^{\text{temp}^3}$</td>
<td>-</td>
</tr>
<tr>
<td>met$^{\text{root}^0}$</td>
<td>left</td>
<td>we$^{\text{subj}^1}$</td>
<td>-</td>
<td>just$^{\text{temp}^3}$</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>met$^{\text{root}^0}$</td>
<td>left</td>
<td>we$^{\text{subj}^1}$</td>
<td>just$^{\text{temp}^3}$</td>
<td>STOP</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>met$^{\text{root}^0}$</td>
<td>right</td>
<td>-</td>
<td>-</td>
<td>STOP</td>
<td>him$^{\text{dobj}^2}$</td>
<td>-</td>
</tr>
<tr>
<td>met$^{\text{root}^0}$</td>
<td>right</td>
<td>-</td>
<td>-</td>
<td>him$^{\text{dobj}^2}$</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>met$^{\text{root}^0}$</td>
<td>right</td>
<td>him$^{\text{dobj}^2}$</td>
<td>-</td>
<td>STOP</td>
<td>-</td>
<td>-</td>
</tr>
</tbody>
</table>
The intuition is to measure how often the deep edge $I \rightarrow D$ occurs in an extraction path for a node like N relative to how often it occurs in the graph in general. If this ratio is smaller than 1, then $I \rightarrow D$ occurs in extraction paths for N below chance level, ie, it acts as an island whose strength is inversely proportional with the ratio. If the probability ratio is larger than 1, then $I \rightarrow D$ occurs above chance level, ie, it is not an island edge, and we assign it the ratio 1 in order to ensure that the weight assigned to an extraction path decreases monotonically with the path length.

The distributions P_{worder}, P_{depextr}, and P_{dep} are estimated with XHPM distributions, using as attributes the lexeme, deep edge type, surface edge type, and locality properties (ie, whether the node has been extracted or not) for each node, using the hierarchies for lexemes and edge types defined in the lexicon. The DG encoding of these distributions is shown in Appendix A.

Primary expansion 2a. Select complement frame

In step 2a of the primary expansion, the node N must choose a complement frame. This choice is modelled by means of the XHPM distribution P_{cframe} which encodes the node’s complement frame as an empirically distributed variable that is conditioned on the node’s lexeme, deep role, and surface role. The DG encodings for the submodels P_{pri2a} and P_{cframe} are shown in Appendix A.

Primary expansion 2b. Generate fillers

In step 2b of the primary expansion, the node N must choose which fillers it is going to generate. This is modelled as a process where N is presented with a sequence S of potential filler sources in the graph, and a set T of possible filler types. For each filler source $S \in S$ and filler type $T \in T$, N must then determine whether it generates a filler for S with type T. The choice is conditioned on the choices made at the previous filler source S_{prev} in S. The filler sources are presented in outside-in order, starting with the filler sources to the left of N in left-right order, then the filler sources to the right of N in right-left order, and finally the complements of N (which have not received a landing site yet) in generation order. That is, if $C_{S,T}$ encodes whether the filler was created or not, the probability $P_{\text{pri2b}}(N)$ of
the choices made at N with respect to filler generation can be written as:

$$P_{pri2b}(N) = \prod_{S \in \mathcal{S}} \prod_{T \in \mathcal{T}} P_{fgen}(C_{S,T}|N,S,T,S_{prev})$$

where $P_{fgen}(C_{S,T}|N,S,T,S_{prev})$ denotes the probability of the generation choice $C_{S,T}$ given N,S,T,S_{prev}. The set \mathcal{S} of potential filler sources is computed by means of a set of intermediate nodes \mathcal{I}, as follows: (a) \mathcal{I} consists of any node I that equals N, the governor of N, or the grand-governor of N if N is the head of a relative clause that modifies a subject; (b) \mathcal{S} consists of any node S which has some $I \in \mathcal{I}$ in its extraction path.

The distribution P_{fgen} is modelled as an XHPM distribution where the choice $C_{S,T}$ is conditioned on a number of features that capture the most relevant contextual information from our linguistic analyses of control, parasitic gaps, elliptic coordinations, and other filler constructions in sections 2.5, 4.3, and 4.4: (a) the lexeme, deep role, surface role, and complement frame of N; (b) whether S is local or extracted, and whether S precedes its landing site or not; (c) the upwards and downwards part of the path from N to S, and whether N precedes S or not; (d) whether N created a filler with type T for S_{prev}, whether some other node created a filler with type T for S_{prev}, and whether the upwards part of the path from N to S equals the upwards path from N to S_{prev}. At the dependents of N, some of these variables are undefined.

Primary expansion 2c. Consume or pass on fillers

In step 2c of the primary expansion, N must determine how it will dispose of the fillers received from its governor or generated by itself, ie, whether it will analyze a given filler as its own complement or adjunct, or pass on the filler to one of its dependents. This is modelled as a process where each filler F in the list \mathcal{F} of fillers is presented to N in generation order so that N can decide whether F should be analyzed as a local complement or adjunct of N, or be passed on to one of the complements or adjuncts of N. That is, the probability $P_{pri2c}(N)$ of the choices made at N with respect to filler consumption can be written as:

$$P_{pri2c}(N) = \prod_{F \in \mathcal{F}} \frac{P_{fdispose}(C,D|N,F,\chi_F)}{\sum_{C,D} P_{fdispose}(C,D|N,F,\chi_F)}$$

where χ_F is the set of empty complement roles at N when F is presented to N, the variable C encodes whether the filler is consumed by N or passed
on to a dependent, and the variable \(D \) encodes the dependent role which \(F \) is used to fill, or is passed on to.

The distribution \(P_{\text{dispose}} \) is modelled as an XHPM distribution where the choice \((C, D)\) is conditioned on the filler type, the deep path from the filler licensor to the filler, and on the lexemes associated with \(N \), the filler \(F \), and its filler licensor.

Primary expansion 2d. Generate and expand complements

In step 2d of the primary expansion, \(N \) must generate complements in all the complement slots that are not occupied by a filler. That is, the probability \(P_{\text{pri2d}}(N) \) of the choices made at \(N \) with respect to complement generation can be written as:

\[
P_{\text{pri2d}}(N) = \prod_{C \in \mathcal{C}} P_{\text{comp}}(C|N, \rho_C)
\]

where \(\mathcal{C} \) is the set of non-filler complements at \(N \), and \(\rho_C \) is the complement role associated with complement \(C \).

The distribution \(P_{\text{comp}} \) is modelled as an XHPM distribution where the choice of complement lexeme is conditioned on the governor lexeme and the complement role. Although an XHPM model can be used to learn statistical dependencies between different complement slots, we use a simpler model where the complements are generated independently of each other. The simple model is justified by Li and Abe (1999), who report that the statistical dependencies between complement roles are rather weak, and therefore difficult to detect.

Primary expansion 3a. Generate and expand non-punctuation adjuncts

In step 3a of the primary expansion, \(N \) must generate all non-punctuation adjuncts, including any adjuncts that received a filler in step 2c. We model this as a process where the governor creates adjuncts one by one: after generating an adjunct role (with probability 1 if the adjunct role was generated by the filler-passing mechanism in step 2c in the primary expansion), the governor chooses an adjunct lexeme, and this process is repeated until the governor generates the special adjunct role \(\text{STOP} \). That is, the probability \(P_{\text{pri3a}}(N) \) of the choices made at \(N \) with respect to the generation of non-
punctuation adjuncts can be written as:
\[P_{\text{pri3a}}(N) = P_{\text{arole}}(\text{STOP}|N) \cdot \prod_{A \in A} \max(\phi_A, P_{\text{arole}}(\rho_A|N)) P_{\text{adj}}(A|N, \rho_A) \]

where \(A \) is the set of adjuncts at \(N \), \(\rho_A \) is the adjunct role associated with adjunct \(A \), and \(\phi_A \) is 1 if \(A \) was generated by the filler-passing mechanism in step 2c in the primary expansion, and 0 otherwise.

The distribution \(P_{\text{arole}} \) is modelled as an XHPM distribution where the choice of adjunct role is conditioned on the governor lexeme. The distribution \(P_{\text{adj}} \) is modelled as an XHPM distribution where the choice of adjunct lexeme is conditioned on the governor lexeme and the adjunct role.

Primary expansion 4a. Generate and expand gaps

In step 4a of the primary expansion, \(N \) must generate all its gapping fillers and their gapping dependents. This is modelled as a process where \(N \) chooses the number of gapping fillers, the number of gapping dependents for each gapping filler, and the replacement path and lexeme for each gapping dependent. That is, the probability \(P_{\text{pri4a}} \) of the choices made at \(N \) with respect to gaps can be written as:
\[
P_{\text{pri4a}}(N) = P_{\text{gapnum}}(#G|N) \cdot \prod_{G \in G} P_{\text{gapdepnum}}(#D_G|N, G) \cdot \prod_{D \in D_G} P_{\text{gappath}}(\pi_D|N, D) P_{\text{gapdep}}(D|\Gamma_D, \rho_D)
\]

where \(G \) is the set of gapping fillers generated by \(N \), \(D_G \) is the set of gapping dependents at gapping filler \(G \), \(\pi_D \) is the path from \(N \) to the node \(R \) that \(D \) replaces, \(\Gamma_D \) is the governor of the replaced node \(R \), and \(\rho_D \) is the dependent role of \(R \). The probability \(P_{\text{gapdep}}(D|\Gamma, \rho) \) is defined as \(P_{\text{comp}}(D|\Gamma, \rho) \) if \(\rho \) is a complement role, and as \(P_{\text{adj}}(D|\Gamma, \rho) \) if \(\rho \) is an adjunct role. This model is a simplification, since we assume that the gapping dependent satisfies the same dependency role as the dependent it replaces.

The distribution \(P_{\text{gapnum}} \) is modelled as an XHPM distribution where the number of gaps at \(N \) is modelled by an empirical distribution, conditioned on the lexeme associated with \(N \). The distribution \(P_{\text{gapdepnum}} \) is modelled as an XHPM distribution where the number of gapping dependents at a gap \(G \) is modelled as an empirical distribution conditioned on
the lexeme associated with \(N \). Finally, the distribution \(P_{\text{gappath}} \) is modelled as an XHPM distribution where the path from gap licensor to the replaced node is modelled as an empirical distribution conditioned on the lexeme associated with \(N \).

Secondary expansion 1a+b. Generate deep roots if node is at the right periphery, and expand deep roots

In step 1a of the secondary expansion, a node \(N \) at the right periphery of the graph can generate zero or more deep roots. This is modelled as a process where \(N \) first generates the number of deep roots, and then generates each deep root. That is, the probability \(P_{\text{sec1a}} \) of the choices made at \(N \) with respect to deep roots can be written as:

\[
P_{\text{sec1a}}(N) = P_{\text{drootnum}}(\#R|N) \cdot \prod_{R \in R} P_{\text{droot}}(R|N)
\]

where \(R \) is the set of surface roots at \(N \). The distribution \(P_{\text{drootnum}} \) is modelled as an XHPM distribution where the number of surface roots is modelled as an empirical variable that is conditioned on the lexeme associated with \(N \). The distribution \(P_{\text{droot}} \) is modelled as an XHPM distribution where the lexeme of the deep root \(R \) is conditioned on the lexeme for \(N \) and the surface role of \(R \) at \(N \). Step 1b in the secondary expansion performs a primary expansion of each generated deep root.

Secondary expansion 2a+b. Identify antecedents for anaphoric frames and missing complements

Steps 2a and 2b of the secondary expansion of \(N \) identify the antecedents for the anaphoric frames and the missing complements of \(N \). Although these steps have not been implemented in the DG language model in Appendix A, step 2a can be modelled as a process where \(N \) identifies an antecedent \(A_F \) for each anaphor frame \(F \) at \(N \) from the set \(\mathcal{A}_F \) of all possible antecedents for anaphor frame \(F \) (including the dummy null antecedent \(\text{NULL} \)). That is, the probability \(P_{\text{sec2a}} \) of the choices made at \(N \) with respect to antecedents for anaphora can be written as:

\[
P_{\text{sec2a}}(N) = \prod_{F \in \mathcal{F}} \frac{W_{\text{anaphor}}(A_F, \pi_{A_F}|N,F)}{\sum_{A'_F \in \mathcal{A}_F} W_{\text{anaphor}}(A'_F, \pi_{A'_F}|N,F)}
\]
where \mathcal{F} denotes the set of anaphor frames at N, and π_A denotes the deep path from N to the antecedent A. The weight function $W_{\text{anaphor}}(A, \pi_A|N, F)$ must assign non-negative weights to the possible antecedents that quantify the relative well-formedness of the path from the anaphor to its antecedent, and of the lexemes associated with the anaphor and its antecedent. We imagine that W_{anaphor} could be modelled as the product of two factors, a factor $W_{\text{antecedent}}$ that measures the well-formedness of the antecedent ignoring the path, and a factor W_{antepath} that measures the well-formedness of the path from anaphor to antecedent (W_{antepath} could be constructed in a way that resembles the weight assigned to extraction paths in W_{pri1a} on p. 269). We leave it as a topic of further research to determine appropriate definitions of $W_{\text{antecedent}}$ and W_{antepath}.

Similarly, step 2b can be modelled as a process where an antecedent is chosen for each empty complement slot C at N. That is, the probability P_{sec2b} of the choices made at N with respect to antecedents for empty complement slots can be written as:

$$P_{\text{sec2b}}(N) = \frac{\prod_{C \in \mathcal{C}} W_{\text{anaphor}}(A_C, \pi_{A_C}|N, C)}{\sum_{A' \in A_C} \prod_{F \in \mathcal{F}} P_{\text{pnct}}(\text{STOP}|N, \chi_{F, \text{STOP}}) \prod_{P \in \mathcal{P}_F} P_{\text{pnct}}(P|N, \chi_{F,P})}$$

where \mathcal{C} denotes the set of empty complement slots, A_C denotes the antecedent for complement slot C, π_A denotes the path from N to antecedent A, and A_C denotes the possible antecedents for complement slot C.

Secondary expansion 3a+b. Generate punctuation marks at node and identify their landing site

In step 3a of the secondary expansion, the node N must generate its punctuation marks. This is modelled as a process where each position ω in the current landing field (ie, each position before or after a non-punctuation node) is examined, and zero or more punctuation marks are inserted at ω by a process that generates punctuation marks until the special punctuation mark STOP is generated. That is, the probabilities of the choices made at N with respect to punctuation can be written as:

$$P_{\text{sec3a}}(N) = \prod_{F \in \mathcal{F}} P_{\text{pnct}}(\text{STOP}|N, \chi_{F, \text{STOP}}) \prod_{P \in \mathcal{P}_F} P_{\text{pnct}}(P|N, \chi_{F,P})$$

where \mathcal{F} denotes the set of punctuation fields at N, \mathcal{P}_F denotes the sequence of punctuation marks in the field F, and $\chi_{F,P}$ denotes the punctuation.
6.2. A probabilistic language model for DG

tion context for punctuation mark P in field F. The context consists of the non-punctuation nodes to the immediate left and right of the punctuation field F, the oldest non-punctuation nodes in the landing field of N to the left and right of F, the last open begin mark at N before P, the directly preceding punctuation mark before P in F, and string representations of the left and right outside punctuation fields of F, ie, all punctuation marks that do not land at F but are placed in a punctuation field that is adjacent to F, without any intervening non-punctuation nodes.

The distribution $P_{punct}(P|N, \chi_{F,P})$ is modelled as an XHPM distribution where the lexeme, deep role, and surface role of P is conditioned on the lexeme, deep role, and surface role of N and the nodes in $\chi_{F,P}$, and on the string representation of the outer peripheries.

In step 3b, the DG language model simplifies the problem by assuming that punctuation marks always land locally, ie, that their landing sites always equal their governors. The DG model is therefore unable to deal with quote transpositions in its present form.

Secondary expansion 4a+b. Secondary top-down expansion of dependents and deep roots left-right

Step 4a in the secondary expansion of N performs a secondary expansion of the dependents of N in left-right order; step 4b performs a secondary expansion of the deep roots of N in left-right order.

Remark 6.33 (robustness and zero probabilities). In terms of robustness in parsing and learning, zero probabilities are problematic and should be avoided as much as possible in probabilistic language models. First of all, speakers often produce speech errors that violate the grammar, rendering a grammatical analysis of the speech input impossible — yet hearers often understand the intended meaning anyway, ie, they manage to analyze ungrammatical input. Since analyses with zero probabilities are excluded from consideration in parsing and generation, it is evident that if we want our language models to be robust against speech errors, they should not assign zero probability to ungrammatical analyses that could plausibly result from a slip of tongue.

Moreover, computational language learning is often a two-step process where we create a new grammar from an old one by first parsing a corpus with the old grammar, and then inducing a new grammar from the parsed
input. In this process, we cannot expect to learn analyses that we have excluded as ill-formed in the old grammar — whereas if an analysis is given a small non-zero probability, there is a chance that it will be selected if no better alternative is around, so that the probabilities can be re-estimated correctly in the subsequent learning phase. From an even more principled point of view, we cannot exclude certain constructions simply because they have not been observed: absence of evidence is not the same thing as evidence of absence. This problem is exacerbated by Zipf’s law (Samuelsson 1996; Powers 1998), which tells us that no matter how big a corpus is, a language will contain a significant number of low-frequent constructions that are not present in the corpus.

Because XHPM distributions work by moving probability mass to high-probability areas, XHPM distributions can only assign zero probability to outcomes if either (a) the prior distribution assigns zero probability to the outcome, or (b) the outcome is located in a top rest class with zero outcomes. In order to ensure robustness, DG language models should therefore be designed so that prior distributions rarely give rise to zero probabilities, and so that top rest classes are unlikely end up with zero observations. In order to avoid zero probabilities entirely, one can smooth the XHPM distribution with a non-zero prior, using a weight that is inversely proportional with the data count in the XHPM distribution.

6.3 Summary

In this chapter, we have described the formal machinery needed to encode probabilistic language models in DG. We have also presented a DG language model that is designed to deal with a wide range of linguistic phenomena: complement and adjunct dependencies; fillers used in control constructions, relative clauses, elliptic coordinations, and parasitic gaps; word order phenomena including long-distance movement, island constraints, and missing landed nodes; models for gapping coordinations, deep roots, and punctuation marks; and the outline of a model for identifying antecedents for anaphora.

To our knowledge, the DG language model is the first probabilistic language model for a dependency grammar with this level of linguistic sophistication. However, it is far from perfect: it does not take word distances into account when choosing a landing site for a word (a dependent
should be close to both its governor and landing site); it does not consider
the time-dependent probabilities needed to calculate the probabilities of
partial analyses (missing complements and adjuncts are more acceptable
right after the creation of the head than after a long period of time); and it
implicitly assumes that each lexeme has a unique phonetic realization (in
spoken language, a lexeme is never pronounced in exactly the same way
twice). Moreover, the model should ideally be extended to deal with trans-
lations, multi-speaker dialogue, and even semantics in order to make it
useful in natural language applications such as word alignment, machine
translation, speech processing, etc.

Despite the model’s shortcomings, the wide range of phenomena cov-
ered by the model makes it reasonable to hope that the DG modelling lan-
 guage is expressive enough to encode most of the refinements and exten-
sions sketched above. We therefore view the modelling language and our
proposed DG model as important steps towards a sophisticated probabilis-
tic language model for a dependency formalism such as DG.
Chapter 6. Probabilistic language models
Part IV

Language processing
Chapter 7

Local optimality parsing

In this chapter, we will describe local optimality parsing in detail. In section 7.1, we generalize the algorithm for local optimality parsing so that it can take care of unsegmented input and speech signals with multiple speakers. In section 7.2, we describe how incrementality can be used to identify parsing operations that provide a good model of human parsing, and tentatively propose \(k \)-error parsing operations as a plausible candidate for modelling human parsing. In section 7.3, we define a set of elementary parsing operations for manipulating DG graphs, and formalize the \(k \)-error family of parsing operations in terms of these operations; we also describe how the parser can be implemented efficiently, provide estimates for the time complexity of the different parsing operations and parsers, and show that island constraints and other graph constraints are essential for keeping down the time complexity of local optimality parsing. In section 7.4, we propose a set of refinements to the parsing model that makes it compatible with the psycholinguistic evidence on head-driven parsing. Finally, in section 7.5, we discuss how the DG parsers can be evaluated and describe the steps we have taken in this direction.

7.1 Local optimality parsing with segmentation

Summary. We describe how the local optimality parsing algorithm introduced in section 1.3 can be extended so that it can take care of segmentation, noise, and speech signals with multiple speakers and modalities.
In Definition 1.23, we introduced the LOP algorithm for local optimality parsing. The algorithm requires a segmented speech signal as its input, i.e., it does not model the speaker’s segmentation of the speech signal. In this respect, it is not a realistic model of human parsing, and we will therefore propose an extended algorithm that includes segmentation, and which can be used for both written and spoken language.

Definition 7.1. The algorithm for local optimality parsing with segmentation (LOPS) shown in Figure 7.1 can be used to compute a locally optimal analysis for the unsegmented speech signal s, given a lexicon L that defines a space \mathcal{A} of analyses with cost measure $c: \mathcal{A} \rightarrow \mathbb{R}$, and a set $\pi_1, \ldots, \pi_k: \mathcal{A} \rightarrow \text{Pow}(\mathcal{A})$ of parsing operations. We assume L specifies a possibly empty set L_{concat} of dummy lexemes that are used for concatenating a node with a preceding node, and a possibly empty set L_{noise} of dummy lexemes that are used for nodes representing noise (i.e., segments of the speech signal that do not contain any starting point at which some lexeme in L matches the speech signal). The algorithm maintains a set B of segment boundaries in the speech signal, which indicate the possible starting points for new lexemes. The algorithm starts with the empty analysis and an initial B containing the starting position s_{begin} of the speech signal. The algorithm then parses the input incrementally by applying a parsing operation, or, if that fails, by adding a new node to the graph. To add a new node to the graph, the algorithm removes the first boundary t_0 from B, and finds the set M of all lexemes in L that match the speech signal from t_0; the ending points of the lexemes in M are then added to B; finally, if B is non-empty, the algorithm finds the first boundary t_1 in B and adds a node for the input span $[t_0, t_1]$ with lexemes $M \cup L_{\text{concat}}$; if B is empty (i.e., a segment of the speech signal starting at t_0 cannot be analyzed as part of any lexeme), the algorithm instead finds the first position t_1 in the speech signal at which the speech signal either matches a lexeme in L or ends, and adds a node for the input span $[t_0, t_1]$ with noise lexemes L_{noise}.

The subroutine $\text{improve}(a)$ searches for an improvement a' that can be obtained by applying a parsing operation π_i to a, and is given by:

$$\text{improve}(a) = \begin{cases}
\text{any locally optimal } a' \in \bigcup_{i=1}^k \pi_i(a) \text{ with } c(a') < c(a) & \text{if such an } a' \text{ exists;} \\
'\text{no}' \text{ otherwise.} & \end{cases}$$
7.1. Local optimality parsing with segmentation

procedure local optimality parsing with segmentation (LOPS)
begin
 s := speech signal;
 L := lexicon;
 a := current analysis (initially the empty analysis);
 t₀ := starting time (initially s\text{begin});
 B := set of segment boundaries (initially \{s\text{begin}\});
 while t₀ < s\text{end} or improve(a) ≠ 'no' do
 if improve(a) ≠ 'no' then
 a := improve(a);
 else
 M := set of all lexemes in L that match s from t₀;
 B := B ∪ \{t₀ + ℓ\text{duration} | ℓ ∈ M\} – \{t₀\};
 if B is non-empty then
 t₁ := first boundary in B;
 M′ := concatenation lexemes in L\text{concat};
 else
 t₁ := first point in s after t₀ where a lexeme starts or s ends;
 B := \{t₁\};
 M′ := noise lexemes in L\text{noise};
 end
 n := node spanning [t₀, t₁] with lexemes M ∪ M′;
 a := partial analysis obtained by appending n to a;
 t₀ := first boundary in B;
 end
 return a;
end

Figure 7.1: The LOPS algorithm for local optimality parsing with segmentation and noise recovery.

Remark 7.2. In the LOPS algorithm, the lexical matching can be based on a matching algorithm that is approximate rather than exact, such as an \(n\)-best algorithm that returns the closest-matching lexemes and assigns a cost to each lexeme that expresses its relative probability. In spoken language, approximate matching is a necessity because of the background noise, the natural variation between speakers, and the small random variation in pronunciation that means that a speaker never pronounces a sentence in exactly the same way twice. Even in written language, which follows standard orthography most of the time, there are occasional spelling errors that can only be recognized by means of an approximate matching algorithm.
Remark 7.3. The LOPS algorithm allows us to add a set L_{concat} of dummy concatenation lexemes to nodes that can be analyzed as corresponding to a part of a lexeme. To deal with concatenation, the lexicon must include a concatenation lexeme, like the one shown below. The lexical entry says that a concatenation lexeme should attach itself as a concatenation adjunct with edge label “+” to its immediately preceding node, adding a cost of 1000 if it fails to do so.

\[
\text{type(concat)} \rightarrow \text{super(lexeme)}
\]

\[
\rightarrow \text{aframe(modconcat, sub \{ return $_ \rightarrow \{ + \}$,}
\]

\[
\quad ' + ' \rightarrow \text{prev(any, any))}
\]

\[
\rightarrow \text{cost(missing_concat, 1000 * (−[+−→this]));}
\]

We will assume that the parser encodes the starting time and ending time of each node in the features beginn and endn, the starting time and ending time of the current lexeme in the features beginl and endl, and the ending time of the node’s concatenation in the dynamic feature endc. The lexical entry below specifies that the endc feature of a node is computed by returning the endc feature value of the “+” adjunct, if it exists, and the node’s own endn feature otherwise.

\[
\text{type(node)} \rightarrow \text{setd(end_of_concat, endc, sub \{}
\]

\[
\quad \text{my } ($G, n) = @_;
\]

\[
\quad \text{my } $concat = G\rightarrow\text{get_node}(n, [+ this]);
\]

\[
\quad \text{return defined($concat) ? $G\rightarrow\text{getd($concat, '/endc/')} : \{\text{endc} => n\rightarrow\text{get(endn)}\};}
\]

The following cost function can be used to punish any mismatch between the ending times for the node’s current lexeme and the node’s current concatenation (provided the node is not itself a concatenation). The cost is the same, regardless of whether the mismatch is small or large.

\[
\text{type(node)} \rightarrow \text{cost(bad_concatenation,}
\]

\[
\quad 1000 * (\text{val(endl, this) \neq val(endc, this) if } −[+−→this]);
\]

Alternatively, we can use a more complicated cost function to ensure that the cost depends on how much the ending time of the concatenation differs
from the ending time of the lexeme, relative to the length of the lexeme. This will ensure that if the parser cannot create the correct concatenation in one step, it will be guided towards the correct concatenation.

\[
\text{type(node)} \rightarrow \text{cost(bad_concatenation, 1000 * code(sub \{ }
\]

\[
\text{my } (\$G, \$n) = @_;
\]

\[
\text{return } 0 \text{ if } (\$G \rightarrow \text{get_node($n, [\text{this}]}));
\]

\[
\text{my } \$\text{beginl} = \$G \rightarrow \text{get($n, \text{beginl});}
\]

\[
\text{my } \$\text{endl} = \$G \rightarrow \text{get($n, \text{endl});}
\]

\[
\text{my } \$\text{endc} = \$G \rightarrow \text{get($n, \text{endc});}
\]

\[
\text{return abs((\$\text{endl} - \$\text{endc}) / (\$\text{endl} - \$\text{beginl});
\}
\]

Example 7.4. As an example of how the LOPS algorithm (with the concatenation handling outlined in Remark 7.3) segments a speech signal, consider the Danish sentence “Hårfarve er arvelig.” (“Hair colour is hereditary.”). The table below lists all legal words contained as substrings in the sentence, excluding names for simplicity; we see that the phrase is locally ambiguous with respect to morphology.

<table>
<thead>
<tr>
<th>H</th>
<th>å</th>
<th>r</th>
<th>f</th>
<th>ar</th>
<th>v</th>
<th>e</th>
<th>ω</th>
<th>er</th>
<th>ω</th>
<th>ar</th>
<th>v</th>
<th>e</th>
<th>l</th>
<th>i</th>
<th>g</th>
</tr>
</thead>
<tbody>
<tr>
<td>hår</td>
<td>å</td>
<td>far</td>
<td>ar</td>
<td>ve</td>
<td>ω</td>
<td>er</td>
<td>ω</td>
<td>ar</td>
<td>ve</td>
<td>el</td>
<td>li</td>
<td>lig</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>år</td>
<td>farv</td>
<td>arv</td>
<td>arve</td>
<td></td>
</tr>
<tr>
<td>farve</td>
<td></td>
</tr>
</tbody>
</table>

Since the LOPS parser only inserts boundaries after lexemes, a lexicon like the one sketched above will result in the following segmentation:

<table>
<thead>
<tr>
<th>Hår</th>
<th>far</th>
<th>v</th>
<th>e</th>
<th>ω</th>
<th>er</th>
<th>ω</th>
<th>ar</th>
<th>v</th>
<th>e</th>
<th>l</th>
<th>i</th>
<th>g</th>
</tr>
</thead>
<tbody>
<tr>
<td>hår</td>
<td>far</td>
<td>ve</td>
<td>ω</td>
<td>er</td>
<td>ω</td>
<td>ar</td>
<td>ve</td>
<td>el</td>
<td>li</td>
<td>lig</td>
<td></td>
<td></td>
</tr>
<tr>
<td>farv</td>
<td>arv</td>
<td>arve</td>
<td></td>
</tr>
<tr>
<td>farve</td>
<td></td>
</tr>
</tbody>
</table>

This segmentation of the speech signal into nodes is compatible with the following six segmentations of the speech signal into lexemes: “Hårfarve” can be segmented into either “Hår|farve” (hair-colour) or “Hår|far|ve” (hair-father-woe), and “arvelig” can be segmented into either “arvelig” (hereditary), “ar|vel|ig” (inherit-corpse), or “ar|ve|lig” (scar-woe-corpse). Assuming that two adjacent nouns can form noun compounds in two different
Chapter 7. Local optimality parsing

Figure 7.2: Two morphological analyses with LOPS segmentation, corresponding to “Hair-color is hereditary” (correct) and “((Hair)father)woe is ((scar)woe)corpse” (semantically ill-formed).

In written language, we view spaces as punctuation signs which have their own associated lexemes, and which attach themselves as pnct adjuncts to the immediately preceding word. The secondary top-down step 3a in our probabilistic language model will punish words that are not followed by spaces by giving them a somewhat lower probability, which is non-zero if the treebank contains a few errors where a space is missing. This means that the LOPS parser is in principle capable of parsing a text where all spaces have been removed. The lack of spaces means that
the resulting analysis has an increased cost (every missing space will be marked as ungrammatical), and that it may be more difficult for the parser to find the correct analysis because the spaces are used for disambiguation. In spoken language, prosody and pronunciation play the same role with respect to disambiguation as punctuation in written language.

Example 7.6. The LOPS algorithm allows us to specify a set \(L_{\text{noise}} \) of lexemes that are assigned to nodes whose ending point does not coincide with the end of a lexeme — ie, to nodes whose speech segment is not matched by any lexeme, and which must therefore be analyzed as noisy, inaudible, or unknown input. This error recovery mechanism allows the parser to continue its processing from the next point in the speech signal where it can recognize a lexeme, and to deal intelligently with the unanalyzed part of the speech signal. The lexeme below deals with noisy input: it simply allows the noise node to attach itself as an adjunct to the immediately preceding node, without affecting the interpretation if \(\text{mod}_{\text{noise}} \) is defined as a modifier that simply passes on its argument unchanged.

\[
\begin{align*}
\text{type(noise)} & \rightarrow \text{super(lexeme)} \\
& \rightarrow \text{aframe(mod}_{\text{noise}}, \text{sub} \{ \text{return } \text{$_{->}$$\{noise\}} \}, \\
& \quad \text{noise } \rightarrow \text{prev}(\text{any}, \text{any})) \\
& \rightarrow \text{cost(missing}_{\text{parent}}, 100 \ast (\neg [\text{noise} \rightarrow \text{this}]));
\end{align*}
\]

Dealing with unknown input is far more difficult. A rather ambitious idea is to have dummy lexemes for different combinations of word class and semantic type (event, state, object, attribute, etc). After the dummy lexemes have been assigned to the node, the parser will disambiguate between the alternatives on the basis of the syntactic, semantic, and pragmatic context. If the speaker model includes high-level cognitive processing, the speaker may be able to form a number of hypotheses about the meaning of the word. When the parser’s disambiguation process has stabilized, the speaker can insert the lexemes corresponding to the most plausible hypotheses into the speaker’s lexicon. The next time the unknown word is used, these lexemes must then compete with each other. Lexemes that often win in this competition will receive a high probability, whereas lexemes that never win will receive a low probability and eventually be weeded out by the speaker’s learning algorithm. Inaudible input can be handled in the same way, except that the speaker uses an existing lexeme
rather than hypothesizing a set of new lexemes. Obviously, this proposal requires a model of the speaker’s cognitive abilities that is far beyond the current state-of-art within cognitive science. It should therefore be viewed as a rather incomplete and tentative account of how humans deal with unknown words.

In the LOPS algorithm, the input consists of a single speech signal. Thus, there is no way to distinguish between different speakers or different modalities (ie, speech, vision, etc.), and the LOPS algorithm is therefore not well suited to parsing dialogue with several speakers and overlapping speech. For this reason, we will propose the following extension of LOPS where the speech signal consists of k different channels that are segmented independently of each other. The channels can be used to represent different speakers and different modalities.

Definition 7.7. Let A be a set of analyses, let $c : A \rightarrow \mathbb{R}$ be a cost measure on A, let s be a speech signal with k channels s_1, \ldots, s_k, let L be a lexicon with sublexicon L_i for speech channel i, and let $\pi_1, \ldots, \pi_k : A \rightarrow \text{Pow}(A)$ be a set of parsing operations. The algorithm for multi-channel local optimality parsing with segmentation (MLOPS) shown in Figure 7.3 can be used to compute a locally optimal analysis for the unsegmented multi-channel speech signal s. The set L_i^{concat} denotes a possibly empty set of dummy lexemes for channel i that are used for concatenating a node with a preceding node, and the set L_i^{noise} denotes a possibly empty set of dummy lexemes for channel i that are used for nodes representing noise (ie, a part of the speech signal that does not match any lexeme in L_i). The procedure $\text{improve}(a)$ is defined as in Definition 7.1.

Remark 7.8. The LOPS and MLOPS parsers are serial parsers with repair, because they only maintain one analysis at a time and allow destructive changes to the current analysis; they are also incremental because they always produce locally optimal analyses before adding the next segment to the graph (cf. Definition 1.24).

Remark 7.9. The LOP parser resembles the parser proposed by Daum and Menzel (2002) in that it is based on local search with a cost-based grammar. The most important difference between the two parsers is that the parser proposed by Daum and Menzel is based on guided local search with 1-change operations rather than simple local search with k-error operations,
7.1. Local optimality parsing with segmentation

```
procedure multi-channel local optimality parsing (MLOPS)
begin
  s := speech signal with channels s_1, ..., s_k;
  L_i := lexicon for channel i;
  a := current analysis (initially the empty analysis);
  t_0 := starting time (initially s^{begin});
  B_i := set of segment boundaries for channel i (initially \{s^{begin}\});
  while t_0 < s^{end} or \text{improve}(a) \neq 'no' do
    if \text{improve}(a) \neq 'no' then
      a := improve(a);
    else
      i := any channel where B_i contains first boundary t_0;
      M_i := set of all lexemes in L_i that match s_i from t_0;
      B_i := B_i \cup \{t_0 + \ell_{\text{duration}} \mid \ell \in M_i\} - \{t_0\};
      if B_i is non-empty then
        t_1 := first boundary in B_i;
        M'_i := concatenation lexemes in L_i^{\text{concat}};
      else
        t_1 := first point in s_i after t_0 where a lexeme starts or s_i ends;
        B_i := \{t_1\};
        M'_i := noise lexemes in L_i^{\text{noise}};
      end
      n := node spanning [t_0, t_1] in s_i with lexemes M_i \cup M'_i;
      a := partial analysis obtained by appending n to a;
      t_0 := first boundary in B_1 \cup \ldots \cup B_k;
    end
  return a;
end
```

Figure 7.3: The MLOPS algorithm for multi-channel local optimality parsing with segmentation and noise recovery.

that their parsing algorithm is parallel and non-incremental and does not start with the empty analysis, and that their dependency analyses are not allowed to be discontinuous.

In this section, we have proposed two extensions to our algorithm for local optimality parsing (LOP): local optimality parsing with segmentation (LOPS), and multi-channel local optimality parsing with segmentation (MLOPS). These extensions enable our parsing algorithm to deal with segmentation of the speech input, so that it can handle unsegmented written and spoken language, as well as dialogues with multiple speakers and
modalities. However, we have not yet specified the set of parsing operations used by these algorithms — an issue we will address in the following two sections.

7.2 Identifying the parsing operations used by humans

Summary. We argue that the choice of parsing operations in human parsing is determined by the need to limit the time complexity as much as possible without significantly reducing the parser’s ability to find the global optimum. We show that local ambiguities provide important information about the parsing operations used in human parsing, and propose different families of parsing operations (k-connect, k-displace, reattach, and k-error) that are almost as powerful as k-change, but require far less computation.

In sections 1.3 and 1.4, we introduced the k-change family of parsing operations. Because the edit distance between alternative analyses in a local ambiguity rarely exceeds 3 in natural language, k-change with $k \leq 3$ is powerful enough to resolve most ambiguities during local optimality parsing. However, while k-change is a very powerful family of parsing operations, it is not particularly efficient, as described below.

Remark 7.10. Cost functions in DG are local, i.e., the computation of the cost at a particular node in the graph only involves a small set of nodes that are not too far apart. Consequently, when trying to eliminate a high cost at a particular node by performing a k-change operation, it is wasteful to try k-change operations where some of the involved nodes are located far from the node we want to improve. From a computational point of view, we therefore expect humans to use local k-change operations and avoid the non-local ones. This is indeed what the psycholinguistic literature seems to suggest: in a famous eyetracking experiment with garden path sentences, Frazier and Rayner (1982) demonstrated that humans pursue a preferred analysis, and when the initial analysis proves wrong, they quickly focus on the problematic region in the sentence, allowing them to revise just that part of the initial analysis which led to the conflict. This observation is consistent with local k-change operations, whereas we would expect focus on other regions too if non-local k-change operations were involved.

If we accept the idea that human parsing is based on local k-change operations, we must ask ourselves whether these parsing operations are
innate or learned, and how we can identify the k-change operations that are used by a particular speaker.

Remark 7.11. Just as different speakers of the same language have slightly different grammars, it may well be the case that parsing operations are learned, and that different speakers acquire slightly different parsing operations (obviously, the parsing operations they acquire can be expected to be near-identical because they are trying to learn the same language). The hypothesis can be tested by looking at strong garden-path effects: if speakers can learn to resolve strong garden-paths without conscious effort, or if speakers of one language can resolve garden-paths that are hard to resolve for speakers of another language, then this can be interpreted as evidence that parsing operations are learned rather than hard-wired.

If parsing operations are learned, how does this learning take place? There are many possible explanations. One possibility is that the parsing algorithm and the k-change operations are innate, but that children gradually learn to refine the k-change operations by observing the patterns in the k-change operations that lead to successful reanalyses. In this way, they can formulate the specializations of k-change that they need to perform efficient parsing, and use the original k-change operation as a fallback operation when everything else fails. This strategy would explain why humans can analyze even strong garden-paths, but with a large delay.

Although there is no direct way of determining which k-change operations are available to a given speaker, we can determine the operations indirectly by looking at how the speaker parses different utterances. We will assume that parsing is incremental, ie, that the speaker produces an optimal analysis before adding the next speech segment to the graph. If the speaker can parse an utterance without problems, then the speaker’s parsing operations are powerful enough to produce the correct analysis via a sequence of locally optimal analyses; but if there is a strong garden-path effect, then the speaker’s parsing operations are too weak to get from the analysis that was locally optimal before the disambiguating region appeared, to the analysis that was globally optimal after the disambiguating region appeared. Since we can ask speakers about their favoured (≈optimal) analysis of the first k words of the input before we reveal the remaining words to them, we can learn a lot about human parsing operations by looking at how speakers analyze partial examples.
Example 7.12. Figure 7.4 shows the optimal analysis of “X knows Y” before and after “Y” is added to the analysis. Since the sentence is not a garden-path, we conclude that English speakers must be capable of non-destructively adding dependency edges between nodes, i.e., they must possess a non-destructive 1-change operation, which we will call 1-add.

Example 7.13. While 1-add is often enough to incorporate a new word correctly into the analysis, destructive repairs are sometimes needed. Figure 7.5 shows the optimal analysis of “X saw Y with Z” immediately before and after “Z” is added to the graph. We assume that the speaker favours the VP-attachment by default, but prefers the NP-attachment after actually seeing “Z”. The two analyses are related by a destructive 2-change operation. Since the sentence is not a strong garden-path, we conclude that English speakers must be capable of desctructively changing a single dependency edge after adding another dependency edge by means of some subfamily of 2-change repairs.

Example 7.14. Figure 7.6 shows the optimal analysis of “X knows Y is Z” immediately before and after “is” is added to the graph. Since the sentence is not a strong garden-path, we again conclude that English speakers must be capable of destructively changing a single dependency edge after adding another by means of some subfamily of 2-change repairs.

Remark 7.15. Sentences like “X knows Y is Z” that do not exhibit strong
Identifying the parsing operations used by humans

Figure 7.6: Example of 2-change repair. The optimal analysis of “X knows Y is Z” immediately before and after “is” is added to the analysis.

garden-path effects, but do involve some kind of reanalysis, often result in a slight delay (called a weak garden-path effect) that can be measured in eye-tracking experiments (cf. Ferreira and Henderson 1990). Weak garden-path effects are not surprising if we assume that the human parser tries fast parsing operations (e.g., 1-add) before it tries slower ones (e.g., 2-change). In our example, this means that the parser must perform a 1-add operation and a slower 2-change operation, which takes more time than performing a 1-add operation alone, thereby explaining the slight delay.

Example 7.16. Examples of 3-change repairs in naturally occurring language are harder to find, but they do exist. Figure 7.7 shows the German example “Die Walzer haben die Musiker erfreut” (“The waltzes have pleased the musicians”), where the initial analysis of “Die Walzer haben die Musiker” (“The musicians possess the waltzes”) is optimal before the lookup, and the revised analysis is optimal after the lookup. The repair reverses the subject and direct object roles, and reanalyzes “haben” as having a verbal object rather than a direct object.

Examples exhibiting strong garden-path effects are as interesting as normal examples because they provide negative information about the parsing operations employed in human parsing.

Example 7.17. From the observation that the strong garden-path in Figure 7.8 can be repaired with a 2-change operation, we can conclude that the full power of 2-change is not readily available in human parsing.

Example 7.18. The headline “Dismay With Saudi Arabia Fuels Pullout Talks” (from New York Times, January 16, 2002) is an example of a strong garden-path sentence, which is highly ambiguous because many of the words both have a noun reading and a verb reading. As shown in Figure 7.9, the edit distance between two ambiguous readings can be as high
as 5, i.e., we need a 5-change operation to change the first analysis into the other. Because of the high edit distance, readers who misinterpret one of the words — e.g., by analyzing “Fuels” as a noun that is part of the noun compound “Saudia Arabia Fuels” — have difficulties finding a parsing operation that changes their initial incorrect analysis to the intended analysis, and therefore experience a strong garden-path effect.

The positive and negative examples presented above can be used to identify families of parsing operations that are powerful enough to handle the positive examples, but weak enough to fail to handle the negative examples. First of all, we observe that in all of the positive examples we have presented so far, the changed edges have formed a connected subgraph of
Identifying the parsing operations used by humans

The original dependency graph. Even in the strong garden-path examples, the involved edges are not arbitrarily far apart. Since k-change does not prevent the involved edges from being arbitrarily far apart, this suggests that we should look at the following family of parsing operations.

Definition 7.19. A k-connect operation is a k-change operation which reanalyses k nodes n_1, \ldots, n_k where both the changed edges and the new edges at the nodes n_1, \ldots, n_i form a connected subgraph for each $i = 1, \ldots, k$. A rooted k-connect operation (or k-rconnect operation) is a k-connect operation where n_1 is a root. An error-initiated k-connect operation (or k-econnect operation) is a k-connect operation where n_1 is a dynamic error node.

We can formulate an even tighter subfamily of k-connect by observing that the changed edges in the positive examples of repairs presented here do not only form a connected graph: the repair often seems to be triggered by an unanalyzed word w_1 whose new dependency role is blocked by the dependency role of a second word w_2, whose new dependency role may in turn be blocked by a third word w_3, and so on (e.g., the direct object “Y” blocks the analysis of “is” as a verbal object in Figure 7.6). This suggests we should look at the following family of parsing operations.

Definition 7.20. A k-displace operation (k-edisplace operation) is a k-rconnect (k-econnect) operation which reanalyses k nodes n_1, \ldots, n_k where the new dependency role of n_i is blocked by the old dependency role of n_{i+1} for

![Diagram](image-url)
each $i = 1, \ldots, k - 1$.

Remark 7.21. Note that 1-connect coincides with 1-change, and that 1-rconnect and 1-displace coincide with 1-add.

Example 7.22. The repair in Figure 7.5 is both a 2-connect and a 2-rconnect operation since Z is initially a root, but not a 2-displace operation because the VP attachment of “with” does not block the attachment of Z as a nominal object. Alternatively, we can analyze Figure 7.5 as the result of first applying a cost-improving 1-add operation followed by a cost-improving 1-change operation.

Example 7.23. Figure 7.6 is a 2-displace repair where the root “is” is reanalyzed as a verbal object of “knows” that displaces the old direct object “Y”, and where “Y” is subsequently reanalyzed as the subject of “is”.

Example 7.24. Figure 7.7 is a 3-displace repair where the root “erfreut” (“pleased”) is reanalyzed as a verbal object of “haben” (“have”) that displaces the old direct object “die Walzer” (“the waltzes”); “die Walzer” is then reanalyzed as a subject of “haben” that displaces the old subject “die Musiker” (“the musicians”); and finally, “die Musiker” is reanalyzed as the direct object of “erfreut”.

Example 7.25. The operation needed to repair the strong garden-path in Figure 7.8 is a 2-rconnect operation where the root “raced” is reanalyzed as a modifier of “X”, and where “X” is reanalyzed as a subject of “fell”. However, it is not a k-displace operation because the reanalysis of “raced” does not displace “fell”. Since the sentence is a strong garden-path, it shows that the full power of 2-rconnect is not available in human parsing, but the garden-path does not disprove 2-displace.

From the preceding examples, we see that k-connect is in general more powerful than the repairs actually observed in human parsing, and that k-displace with $k \leq 3$ can account for all of our positive examples of repairs, except for the PP-reattachment example in Figure 7.5 which can be handled by a 2-rconnect operation, or by a 1-add operation followed by a 1-change. Thus, we might hypothesize that human parsing can be modelled by 1-change and k-displace with $k \leq 3$, as proposed by Kromann (2001). However, while 3-displace captures many of the structural regularities in parsing operations, there are alternative explanations. In our implementation of costs, we have used localized cost functions that assign a cost to each
node in the dependency graph. Within such a framework, the error-driven k-error parsing operation defined informally below is a sensible alternative to k-displace. The underlying intuition is that in each parsing step, we should focus on one error and try to repair only the chosen error and any new errors created during the repair.

Definition 7.26. If a cost function c at a node n generates a static cost that exceeds the cost function’s predefined threshold, then n is called a *static error node signalled by c*, and the cost produced by c is called an *error cost*. The node n is called a *dynamic error node* if the dynamic cost of c exceeds the threshold as well (cf. p. 98).

Definition 7.27. We will assume that cost functions that signal an error always specify a *blame set* of nodes and edges that are responsible for the error. In general, we will assume that the operator $\neg a$ at a node n returns the blame set consisting of n alone, that any other numerical cost operator c returns the union of n and all the blame sets associated with the argument cost functions of c, and that any non-numerical cost operator c returns the union of n and all nodes and edges matched by c.

Example 7.28. An agreement error between a subject and a verb should be blamed on the subject, the verb, and the subject edge. Similarly, an island violation should be blamed on the island and on the extracted node and its surface edge.

Definition 7.29. Let n be a node in a graph G. A parsing operation π is said to *affect* n if π changes the chosen lexeme at n, adds or deletes some edge at n, or causes some cost function to blame n for an error e introduced by π (i.e., the error must be present in $\pi(G)$, but not in G).

Definition 7.30. A *k-error operation* is a k-change operation which reanalyses k nodes n_1, \ldots, n_k in a graph G such that the following three conditions are satisfied, where $G_0 = G$ and G_i denotes the graph G after changing n_1, \ldots, n_i: (a) n_1 is blamed by a cost function c that signals a dynamic error in G, but no error in G_1; (b) each n_i with $i > 1$ is affected by the change from G_{i-1} to G_i; and (c) each n_i is blamed by a cost function c that signals a static error in G_{i-1}, but no error in G_i.

Remark 7.31. k-error coincides with 1-change on blame nodes when $k = 1$. Moreover, if all cost functions are local — i.e., a cost function only depends
on its associated node and its local neighbourhood in the graph (a property that does not hold for the extraction cost function) — then a \(k \)-error operation is also a \(k \)-connect operation since a local cost function cannot change without some change in the local neighbourhood.

Example 7.32. Assuming that roots are always error nodes, Figure 7.4 is an example of 1-error, and Figure 7.5 is an example of 2-error if we assume that the VP-attachment analysis turns “with” into an error node, ie, that “with” detects that it cannot sensibly modify the verb because of semantic mismatch when it has “Z” as its nominal object. Figure 7.6 is an example of 2-error, and Figure 7.7 is an example of 3-error. The strong garden-path in Figure 7.8 is not an example of \(k \)-error because the repair can only start by reanalyzing “X”, and “X” is not an error node (the parsing operations do not allow the root “raced” to be reanalyzed as a dependent of “X” before “X” has been deleted as a dependent of “raced” — ie, the parsing operations can never result in cyclic dependencies).

From the preceding examples, we see that \(k \)-error with \(k \leq 3 \) explains all our positive and negative examples of repairs. Moreover, 1-error is far more restrictive than 1-change because 1-error only applies to error nodes whereas 1-change applies to all nodes. This means that \(k \)-error is a more efficient family than 1-change and \(k \)-displace. For that reason, we believe that \(k \)-error is an even better model of human parsing than 1-change and \(k \)-displace, and we will therefore use \(k \)-error with \(k \leq 3 \) as the basis of our DTAG implementation of local optimality parsing.

In order to ensure that the parser arrives at a locally optimal analysis within \(O(n) \) parsing operations, where \(n \) is the number of segments in the input, we must place special restrictions on the parsing operations.

Definition 7.33. A parsing operation is called *edge-monotonic* if it never decreases the number of edges in the graph, and *edge-increasing* if it always increases the number of edges in the graph.

Remark 7.34. Since a dependency graph always has at most \(O(n) \) edges, the parser is guaranteed to arrive at a locally optimal analysis within \(O(n) \) parsing operations when all parsing operations are edge-increasing. If the parsing operations are only edge-monotonic, the parser is not guaranteed to terminate within \(O(n) \) operations, unless we assume that there exists a constant \(k \) such that we cannot apply more than \(k \) locally optimal cost-
increasing and edge-monotonic parsing operations after each other without increasing the number of edges. In practice, this assumption is not unrealistic, and we will therefore assume that if the parsing operations are edge-monotonic, then the parser will terminate within $O(n)$ operations.

Remark 7.35. Other authors have proposed parsing operations that resemble the parsing operations proposed here. For example, 1-change is equivalent to the “snip” operation proposed by Lewis (1999), and 1-change operations are also used in the parsing algorithm by Daum and Menzel (2002). Similarly, the Grammatical Dependency Principle proposed by Fodor and Inoue in (Fodor and Ferreira 1998, ch. 4) can be viewed as a special instance of k-error operations.

In this section, we have presented different families of parsing operations (k-connect, k-displace, k-error) that seem powerful enough to deal with most of the cases that can be handled by humans, while being more computationally efficient than k-change. We have made only modest use of the psycholinguistic evidence, and much more research is clearly needed to determine which parsing operations are actually used in human parsing. However, we have provided a methodology that can be used to determine this set of parsing operations by psycholinguistic observations of how humans analyze partial input.

7.3 An efficient set of parsing operations

Summary. We describe our elementary parsing operations for changing a node’s lexeme, landing site, and governor, and how these operations are chained together in our implementation of k-error operations. We describe the time complexity of the operations in four scenarios with different assumptions about graph structure, island constraints, and discontinuity. Finally, we discuss how k-error operations can be implemented efficiently by means of first-improvement search algorithms with anytime properties.

So far, we have only focused on the changes that parsing operations make to the dependency structure, ie, we have ignored any changes to a node’s lexeme and landing site. We will now address this problem. We start by specifying the elementary operations for modifying a node n in a dependency graph G with respect to its active lexeme, landing site, governor, fillers, and gap dependents.
Definition 7.36. A *lex-chn* operation at \(n \) is a 1-change operation that replaces the active lexeme at \(n \) with one of \(n \)'s non-active lexemes.

Definition 7.37. An *lsite-del* operation at an ungoverned non-filler node \(n \) with landing edge \(l \rightarrow n \) is a 1-change operation that deletes \(l \rightarrow n \).

Definition 7.38. A *gov-del* operation at a node \(n \) with governor edge \(g \rightarrow n \) is a 1-change operation that deletes \(g \rightarrow n \) and any incoming replacement edge at \(n \).

Definition 7.39. A *fill-del* operation at a filler node \(f \) is an operation that deletes the node \(f \) and all fillers licensed by it from the graph along with all edges connected to the deleted nodes.

Definition 7.40. A *src-del* operation at a filler node \(f \) with filler source edge \(s \rightarrow f \) is a 1-change operation that deletes \(s \rightarrow f \).

When adding edges to the graph, we distinguish between edges that are licensed by an active lexeme ("add" operations), and edges that are only licensed by a non-active lexeme ("addx" operations). Since the edge produced by an addx-operation is not licensed by the active lexeme, addx-operations must usually be followed by a lex-chn operation that changes the active lexeme to the lexeme that licensed the edge.

Definition 7.41. An *lsite-add* (lsite-addx) operation at a node \(n \) without a landing site is a 1-change operation that adds a new surface edge of the form \(l \rightarrow n \), where the node \(l \) is yield-adjacent to \(n \) and has an active (non-active) lexeme that licenses \(n \) as a landed node with edge label \(e \).

Definition 7.42. A *comp-add* (comp-addx) operation at a node \(n \) without a governor edge, but with landing site \(l \) where \(l \) is a non-filler, is a 1-change operation that adds a new governor edge of the form \(g \rightarrow n \) where the node \(g \) equals \(l \) or is dominated by \(l \) in the deep tree or the surface tree, and has an active (non-active) lexeme whose complement frame licenses \(n \) as a complement with complement edge \(g \rightarrow n \).

Definition 7.43. An *adj-add* (adj-addx) operation at a node \(n \) without a governor edge, but with landing site \(l \) where \(l \) is a non-filler, is a 1-change operation that adds a new governor edge of the form \(g \rightarrow n \) where \(g \) is a node which is dominated by \(l \) in the deep tree or the surface tree such that an active (non-active) lexeme at \(n \) has an adjunct frame that licenses the adjunct governor edge \(g \rightarrow n \).
Definition 7.44. A fill-add (fill-addx) operation at a node n is an operation that adds a non-gapping filler node f and a filler edge $l \xrightarrow{e} f$ to the graph, where f and $l \xrightarrow{e} f$ must be licensed by a filler frame associated with an active (non-active) lexeme at a node l that dominates n in the deep tree or the surface tree.

Definition 7.45. A fill-chn (fill-chnx) operation at a filler node f with filler edge $l \xrightarrow{e} f$ and governor $g \xrightarrow{e_d} f$ is an operation that deletes the edge $l \xrightarrow{e} f$, and adds the edge $l' \xrightarrow{e'} f$ where l' is a node that dominates g and has an active (non-active) lexeme with a filler frame that licenses $l' \xrightarrow{e'} f$.

Definition 7.46. A src-add operation at a filler node f with filler edge $l \xrightarrow{e} f$, but without a filler source edge, is a 1-change operation that adds a new filler source edge $s \xrightarrow{e} f$ which is licensed by the filler frame in l that generated f.

Definition 7.47. A gap-add (gap-addx) operation at a node n without a landing site is an operation that adds a gapping filler f, a filler edge $l \xrightarrow{e} f$, and a landing edge $f \xrightarrow{e_l} n$, where l is yield-adjacent to n with an active (non-active) lexeme that has a gapping frame that licenses the created gapping filler f and the created filler and landing edge.

Definition 7.48. A glsite-add operation at a node n without a landing site is an operation that creates a landing edge $f \xrightarrow{e_l} n$ where f is a gapping filler with some gapping dependent that is yield-adjacent to n, and where e_l is the landing edge type licensed by the gapping frame for f.

Definition 7.49. Let G be a dependency graph containing a governor g. A dependency edge $g \xrightarrow{e} d$ in G is said to block another edge $g \xrightarrow{e'} d'$ provided g has a cost function c that produces an error cost if the edge $g \xrightarrow{e'} d'$ is added to G, but does not produce an error cost if G is left unchanged or if $g \xrightarrow{e'} d'$ replaces $g \xrightarrow{e} d$ in G.

Definition 7.50. A gcomp-add (gcomp-addx) operation at a node n without a governor edge, but with landing edge $l \xrightarrow{e} n$ where l is a gapping filler, is an operation that (a) identifies a proper subsource g' in the source tree for l which has an active (non-active) complement frame that licenses some complement edge $g' \xrightarrow{e_s} n$; (b) identifies a dependent edge $g' \xrightarrow{e'_d} n'$ in the source tree such that $g' \xrightarrow{e'_d} n'$ blocks $g' \xrightarrow{e_s} n$; (c) creates an internal filler g' for g in the gapping tree, if absent; and (d) adds a new complement edge
Definition 7.51. A \textit{gadj-add} (\textit{gadj-addx}) operation at a node \(n \) without a governor edge, but with landing edge \(l \xrightarrow{e} n \) where \(l \) is a gapping filler, is an operation that (a) identifies a node \(g \) in the existing gapping tree for \(l \) such that \(n \) has an active (non-active) adjunct frame that licenses some adjunct edge \(g \xrightarrow{e} n \); (b) identifies a dependent edge \(g' \xrightarrow{e} n' \) in the source tree such that \(g' \xrightarrow{e} n' \) blocks \(g' \xrightarrow{e} n \), where \(g' \) is the subsource of \(g \); and (c) adds a new adjunct edge \(g \xrightarrow{e} n \) and a new replacement edge \(n' \xrightarrow{e_r} n \) where \(e_r \) is the replacement edge type licensed by \(l \).

Definition 7.52. A \textit{gap-par} operation at a gapping filler \(n \) is an operation that ensures parallelism between the source tree and the gapping tree for \(n \) by adding and deleting internal fillers and boundary fillers as necessary.

We have now defined all the elementary parsing operations that we need. Figure 7.10 categorizes the parsing operations according to whether they apply to ordinary nodes, fillers, or gaps. It is quite conceivable that the human brain may be capable of learning these parsing operations from an even simpler set of operations, but in the absence of a theory that explains how this learning mechanism works, it is convenient to assume that the elementary parsing operations are innate.

Remark 7.53. Our set of parsing operations is complete, i.e., given any two well-formed dependency analyses of the same speech signal, it is possible to find a sequence of parsing operations that transforms one analysis into the other. In particular, any dependency analysis licensed by the grammar can be constructed by means of the parsing operations from the empty analysis. To see this, note that we can use \textit{lsite-del}, \textit{gov-del}, \textit{fill-del}, \textit{src-del} and \textit{gap-par} to delete all edges and filler nodes from the old analysis, use \textit{lex-chn} to set the new active lexeme at each node, and use the various add operations and \textit{gap-par} to create the edges and filler nodes in the new analysis. Obviously, this is a very inefficient way of transforming the old analysis into the new one, and we can shorten the transformation significantly by changing only those lexemes, filler nodes, and edges that are not shared by both analyses.

We will now look at the time complexities of the elementary parsing operations. Since the time complexity depends on the structure of the graphs
7.3. An efficient set of parsing operations

<table>
<thead>
<tr>
<th>ordinary node</th>
<th>delete</th>
<th>add</th>
<th>change</th>
</tr>
</thead>
<tbody>
<tr>
<td>lexeme</td>
<td>*</td>
<td>*</td>
<td>lex-chn</td>
</tr>
<tr>
<td>landing site</td>
<td>lsite-del</td>
<td>lsite-add/addx</td>
<td>*</td>
</tr>
<tr>
<td>governor (comp)</td>
<td>gov-del</td>
<td>comp-add/addx</td>
<td>*</td>
</tr>
<tr>
<td>governor (adj)</td>
<td>gov-del</td>
<td>adj-add/addx</td>
<td>*</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>filler</th>
<th>fill-del</th>
<th>fill-add/addx</th>
<th>fill-chn/chnx</th>
</tr>
</thead>
<tbody>
<tr>
<td>source</td>
<td>src-del</td>
<td>src-add</td>
<td>*</td>
</tr>
<tr>
<td>governor (comp)</td>
<td>gov-del</td>
<td>comp-add/addx</td>
<td>*</td>
</tr>
<tr>
<td>governor (adj)</td>
<td>gov-del</td>
<td>adj-add/addx</td>
<td>*</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>gap</th>
<th>fill-del</th>
<th>gap-add/addx</th>
<th>fill-chn/chnx</th>
</tr>
</thead>
<tbody>
<tr>
<td>source</td>
<td>src-del</td>
<td>src-add</td>
<td>*</td>
</tr>
<tr>
<td>gap governor (comp)</td>
<td>gov-del</td>
<td>comp-add/addx</td>
<td>*</td>
</tr>
<tr>
<td>gap governor (adj)</td>
<td>gov-del</td>
<td>adj-add/addx</td>
<td>*</td>
</tr>
<tr>
<td>landed node lsite</td>
<td>lsite-del</td>
<td>glsite-add</td>
<td>*</td>
</tr>
<tr>
<td>landed node gov (comp)</td>
<td>gov-del</td>
<td>gcomp-add/addx</td>
<td>*</td>
</tr>
<tr>
<td>landed node gov (adj)</td>
<td>gov-del</td>
<td>gadj-add/addx</td>
<td>*</td>
</tr>
<tr>
<td>nodes in gapping tree</td>
<td>gap-par</td>
<td>gap-par</td>
<td>gap-par</td>
</tr>
</tbody>
</table>

Figure 7.10: The elementary parsing operations that apply to different kinds of nodes.

under consideration, we will consider four scenarios with different linguistically motivated restrictions on the graph structures with respect to their complements and adjuncts, potential landing sites, island constraints, and continuity (cf. Kromann 2001). As we will see, these restrictions significantly decrease the time complexity of the parsing operations.

Definition 7.54. The time complexity of the elementary parsing operations will be evaluated in the following four scenarios, which place different restrictions on the growth of various graph properties as a function of the number of nodes in the graph:

S1 (none): no restrictions at all.

S2 (branching): any given node in the graph must have bounded degree (ie, it must be connected to at most $O(1)$ edges) and have at most $O(\log n)$ parents in the deep tree and in the surface tree (ie, the deep tree and the surface tree must have height
\[O(\log n)).\]

S3 (islands): in addition to satisfying S2, island constraints must ensure that there is at most one channel for extraction from unbounded depth in each node, ie, that a node has at most \(O(\log n)\) possible governors when its landing site is given.

S4 (continuity): in addition to satisfying S2, the graph must be continuous, ie, a node’s governor must always coincide with its landing site.

Remark 7.55. The assumptions in scenarios S2–S4 capture important regularities in human language. For example, we almost never observe words with more than 5 complements or 5 adjuncts (fewer than 0.026% of all words in the Danish Dependency Treebank have more than 10 dependents), and the assumption about bounded degree is therefore reasonable from a linguistic point of view.

The landing site assumption in S2 captures the observation that the number of potential landing sites for a word tends to grow significantly slower than the number of nodes in the graph, ie, a word tends to be yield-adjacent to only very few other words in the graph. We have assumed that the number of yield-adjacent words is at most \(O(\log n)\), but because the Danish Dependency Treebank lacks dependencies at the discourse level, the treebank cannot be used to check the empirical validity of this bound.\(^1\)

The island constraint assumption in scenario S3 is essentially a consequence of the island constraints proposed by Ross (1967), since these island constraints have the effect that there is essentially only one channel for extraction from unbounded depth.\(^2\) The adjunct island constraint means

\(^1\)If the landing site assumption in S2 is valid, we cannot have linearly nested PPs of arbitrary length (eg, “the man in the chair in the room in the house in the forest . . .”). It is not clear that humans are capable of understanding arbitrarily long nested PPs, but if they are, the landing site assumption is too strong. However, while the landing site assumption is probably important for keeping down the worst-case time complexity of the parser, it may be possible to loosen it without affecting the average-case time complexity by assuming that the parser uses a best-first search strategy to find optimal parsing operations. For example, if an error-driven parser tries the lowest landing site first and it results in an error-free analysis, there is no reason for it to proceed to a higher landing site. With this strategy, the number of potential landing sites is less important. A constraint that penalizes having a large word distance between a word and its governor and landing site is probably also strong enough to force the average-case time complexity down to the estimate we have presented here.

\(^2\)The observation that there is usually only one “spine” of extraction in human languages
that extraction from unbounded depth can only take place via complement edges, and the complex NP constraint means that the extraction path cannot contain nouns dominating verbs; even extraction from nouns with nested prepositional complements seems to be highly restricted. That is, we claim that the purpose of island constraints is to ensure that a node with a given landing site cannot have more than $O(d)$ potential governors that do not violate an island constraint, where d is the depth of the graph. Since d is bounded by $O(\log n)$ by the landing site assumption in scenario S2, it follows that the number of potential governors is bounded by $O(\log n)$. It would be interesting to verify the island constraint assumption empirically on treebank data, but this is outside the scope of this dissertation.

Discontinuous constructions are found in virtually all human languages, so the continuity restriction in scenario S4 is obviously too strong to be linguistically plausible. For example, approximately 0.93% of all dependencies in the Danish Dependency Treebank are discontinuous. But S4 can perhaps be viewed as a linguistically defensible approximation to natural languages, and because most dependencies are continuous, the time complexity for scenario S4 may provide a better estimate for the average-case time complexity of local optimality parsing than scenario S3.

Remark 7.56. Figure 7.11 shows the maximal number of graphs that can be produced by a family of parsing operations at a given node, and the resulting time complexities in scenarios S1–S4.

In our estimates, we assume the following upper bounds. We assume that a lexeme’s complement frames specify at most c different complement roles, that its adjunct frames specify at most a different adjunct roles, that its landing frames specify at most s different surface roles, that it has at most f filler frames, and that a filler frame matches at most o different filler sources; since all these properties are independent of the graph structure, they are $O(1)$ in all scenarios. We assume that a node can have at most x non-active lexemes; since this property does not depend on n, it is $O(1)$ in all scenarios. We assume that a node has at most d dependents; d is $O(n)$ in scenario S1 since we can have a graph where the first node has all other nodes as its adjuncts, but in scenarios S2–S4, d is $O(1)$ because of the assumption about bounded degree. We assume that a node has at most p

has been proposed independently by Christian Wartena, in a talk given in the Mathematics of Language workshop at ESSLLI 2001 (cf. Michaelis and Wartena 1997, 1998).
<table>
<thead>
<tr>
<th></th>
<th>max.ops.</th>
<th>S1 none</th>
<th>S2 balanced</th>
<th>S3 islands</th>
<th>S4 continuity</th>
</tr>
</thead>
<tbody>
<tr>
<td>croles</td>
<td>lexeme</td>
<td>c</td>
<td>O(1)</td>
<td>O(1)</td>
<td>O(1)</td>
</tr>
<tr>
<td>aroles</td>
<td>lexeme</td>
<td>a</td>
<td>O(1)</td>
<td>O(1)</td>
<td>O(1)</td>
</tr>
<tr>
<td>sroles</td>
<td>lexeme</td>
<td>s</td>
<td>O(1)</td>
<td>O(1)</td>
<td>O(1)</td>
</tr>
<tr>
<td>fframes</td>
<td>lexeme</td>
<td>f</td>
<td>O(1)</td>
<td>O(1)</td>
<td>O(1)</td>
</tr>
<tr>
<td>fsrc</td>
<td>frame</td>
<td>o</td>
<td>O(1)</td>
<td>O(1)</td>
<td>O(1)</td>
</tr>
<tr>
<td>lexemes</td>
<td>node</td>
<td>x</td>
<td>O(1)</td>
<td>O(1)</td>
<td>O(1)</td>
</tr>
<tr>
<td>degree</td>
<td>node</td>
<td>d</td>
<td>O(n)</td>
<td>O(1)</td>
<td>O(1)</td>
</tr>
<tr>
<td>dparents</td>
<td>node</td>
<td>p</td>
<td>O(n)</td>
<td>O(log n)</td>
<td>O(log n)</td>
</tr>
<tr>
<td>sites</td>
<td>node</td>
<td>l</td>
<td>O(n)</td>
<td>O(log n)</td>
<td>O(log n)</td>
</tr>
<tr>
<td>govs</td>
<td>site</td>
<td>g</td>
<td>O(n)</td>
<td>O(log n)</td>
<td>O(log n)</td>
</tr>
<tr>
<td>lex-chn</td>
<td></td>
<td>x</td>
<td>O(1)</td>
<td>O(1)</td>
<td>O(1)</td>
</tr>
<tr>
<td>lsites</td>
<td>del</td>
<td>1</td>
<td>O(1)</td>
<td>O(1)</td>
<td>O(1)</td>
</tr>
<tr>
<td>govs</td>
<td>del</td>
<td>1</td>
<td>O(1)</td>
<td>O(1)</td>
<td>O(1)</td>
</tr>
<tr>
<td>fill-del</td>
<td></td>
<td>1</td>
<td>O(1)</td>
<td>O(1)</td>
<td>O(1)</td>
</tr>
<tr>
<td>src-del</td>
<td></td>
<td>1</td>
<td>O(1)</td>
<td>O(1)</td>
<td>O(1)</td>
</tr>
<tr>
<td>lsites</td>
<td>add</td>
<td>ls</td>
<td>O(n)</td>
<td>O(log n)</td>
<td>O(log n)</td>
</tr>
<tr>
<td>lsites</td>
<td>addx</td>
<td>lsx</td>
<td>O(n)</td>
<td>O(log n)</td>
<td>O(log n)</td>
</tr>
<tr>
<td>comp-add</td>
<td></td>
<td>gc</td>
<td>O(n)</td>
<td>O(n)</td>
<td>O(n)</td>
</tr>
<tr>
<td>comp-addx</td>
<td></td>
<td>gcx</td>
<td>O(n)</td>
<td>O(n)</td>
<td>O(n)</td>
</tr>
<tr>
<td>adj-add</td>
<td></td>
<td>ga</td>
<td>O(n)</td>
<td>O(n)</td>
<td>O(n)</td>
</tr>
<tr>
<td>adj-addx</td>
<td></td>
<td>gax</td>
<td>O(n)</td>
<td>O(n)</td>
<td>O(n)</td>
</tr>
<tr>
<td>fill-add</td>
<td></td>
<td>pf</td>
<td>O(n)</td>
<td>O(log n)</td>
<td>O(log n)</td>
</tr>
<tr>
<td>fill-addx</td>
<td></td>
<td>pfx</td>
<td>O(n)</td>
<td>O(log n)</td>
<td>O(log n)</td>
</tr>
<tr>
<td>fill-chn</td>
<td></td>
<td>pf</td>
<td>O(n)</td>
<td>O(log n)</td>
<td>O(log n)</td>
</tr>
<tr>
<td>fill-chnx</td>
<td></td>
<td>pfx</td>
<td>O(n)</td>
<td>O(log n)</td>
<td>O(log n)</td>
</tr>
<tr>
<td>src-add</td>
<td></td>
<td>o</td>
<td>O(1)</td>
<td>O(1)</td>
<td>O(1)</td>
</tr>
<tr>
<td>gap-add</td>
<td></td>
<td>lf</td>
<td>O(n)</td>
<td>O(log n)</td>
<td>O(log n)</td>
</tr>
<tr>
<td>gap-addx</td>
<td></td>
<td>lfx</td>
<td>O(n)</td>
<td>O(log n)</td>
<td>O(log n)</td>
</tr>
<tr>
<td>gsite-add</td>
<td></td>
<td>l</td>
<td>O(n)</td>
<td>O(log n)</td>
<td>O(log n)</td>
</tr>
<tr>
<td>gcomp-add</td>
<td></td>
<td>gcd</td>
<td>O(n^2)</td>
<td>O(n)</td>
<td>O(n)</td>
</tr>
<tr>
<td>gcomp-addx</td>
<td></td>
<td>gcdx</td>
<td>O(n^2)</td>
<td>O(n)</td>
<td>O(n)</td>
</tr>
<tr>
<td>gadj-add</td>
<td></td>
<td>gad</td>
<td>O(n^2)</td>
<td>O(n)</td>
<td>O(n)</td>
</tr>
<tr>
<td>gadj-addx</td>
<td></td>
<td>gadx</td>
<td>O(n^2)</td>
<td>O(n)</td>
<td>O(n)</td>
</tr>
<tr>
<td>gap-par</td>
<td></td>
<td>1</td>
<td>O(1)</td>
<td>O(1)</td>
<td>O(1)</td>
</tr>
<tr>
<td>worst</td>
<td></td>
<td></td>
<td>O(n^2)</td>
<td>O(n)</td>
<td>O(log n)</td>
</tr>
</tbody>
</table>

Figure 7.11: Table showing the maximal number of parsing operations at a given node in the four scenarios.
transitive parents in the deep tree and the surface tree; \(p \) is \(O(n) \) in scenario S1 because we can have a graph where each node depends on the previous node, but in scenarios S2–S4, \(p \) is \(O(\log n) \) because of the assumption that the height of the tree is \(O(\log n) \). We assume that a node has at most \(l \) potential landing sites; \(l \) is \(O(n) \) in scenario S1, for in a graph consisting of a sequence of nodes depending on the previous node followed by a root, the root is yield-adjacent to every other node in the graph and therefore has every other node as a potential landing site; but in scenarios S2–S4, the height of the graph is bounded by \(O(\log n) \), so the number of potential landing sites is at most \(O(2\log n) = O(\log n) \). Finally, we assume that a node has at most \(g \) potential governors, given a landing site; \(g \) is \(O(n) \) in scenario S1 and S2 because a node that is yield-adjacent to the root node can have every other node as its potential governor; in scenario S3, the island assumption ensures that \(g \) is \(O(\log n) \); and in scenario S4, \(g = 1 \) because the governor must coincide with the landing site.

The maximal number of graphs produced by a particular family of parsing operations at a given node is calculated as follows. \textit{lex-chn}: There are at most \(x \) different \textit{lex-chn} operations, since the node has at most \(x \) lexemes. \textit{*-del}: The \textit{lsite-del}, \textit{gov-del}, \textit{fill-del}, and \textit{src-del} operations for the node are unique because they specify a well-defined set of edges that must be deleted. \textit{lsite-add/addx}: There are at most \(ls \) \textit{lsite-add} operations, since the node has at most \(l \) potential landing sites, whose active lexemes license at most \(s \) different surface roles. Similarly, there are at most \(lsx \) \textit{lsite-addx} operations, since each landing site has at most \(x \) non-active lexemes. \textit{comp-add/addx}: There are at most \(gc \) \textit{comp-add} operations, since the node has at most \(g \) potential governors given its landing site, and the active lexeme in a governor licenses at most \(c \) different complement roles. Similarly, there are at most \(gcx \) \textit{comp-addx} operations, since a governor has at most \(x \) non-active lexemes. \textit{adj-add/addx}: There are at most \(ga \) \textit{adj-add} operations, since the node has at most \(g \) potential governors given its landing site, and the active lexeme in the node licenses at most \(a \) different adjunct roles. Similarly, there are at most \(gax \) \textit{adj-addx} operations, since the node has at most \(x \) non-active lexemes. \textit{fill-add/addx}: There are at most \(pf \) \textit{fill-add} operations, since the node has at most \(p \) parents, and the active lexeme in a parent has at most \(f \) filler frames. Similarly, there are at most \(pf \) \textit{fill-addx} operations, since a parent has at most \(x \) non-active lexemes. \textit{fill-chn/chnx}: There are at most \(pf \) \textit{fill-chn} operations, since the governor of the filler has at most \(p \)
parents, and the active lexeme in each parent has at most \(f\) filler frames. Similarly, there are at most \(p f x\) \(\text{fill-chnx}\) operations, since each parent has at most \(x\) non-active lexemes. \(\text{src-add}\): There are at most \(o\) \(\text{src-add}\) operations, since the filler frame of the node’s filler licensor licenses at most \(o\) different filler sources. \(\text{gap-add/addx}\): There are at most \(l f\) \(\text{gap-add}\) operations, since a node has at most \(l\) potential landing sites which license at most \(f\) different gapping fillers; similarly, there are at most \(l f x\) different \(\text{gap-addx}\) operations because each node has at most \(x\) non-active lexemes. \(\text{glsite-add}\): There are at most \(l\) \(\text{glsite-add}\) operations, since a node has at most \(l\) potential landing sites and the landing site edge is uniquely determined by the gapping filler. \(\text{gcomp-add/addx}\): There are at most \(gcd\) \(\text{gcomp-add}\) operations, since the node has at most \(g\) potential governors given its landing site, the active lexeme in the governor licenses at most \(c\) different complement roles, and the governor has at most \(d\) other dependents that the node may replace. Similarly, there are at most \(gcdx\) \(\text{gcomp-addx}\) operations, since the governor has at most \(x\) non-active lexemes. \(\text{gadj-add/addx}\): There are at most \(gad\) \(\text{gadj-add}\) operations, since the node has at most \(g\) potential governors given its landing site, the node’s active lexeme licenses at most \(a\) different adjunct roles, and the governor has at most \(d\) other dependents that the node may replace. Similarly, there are at most \(gadx\) \(\text{gadj-addx}\) operations, since the governor has at most \(x\) non-active lexemes. \(\text{gap-par}\): Since there is only one way of ensuring parallelism between a source tree and a gapping tree, the \(\text{gap-par}\) operation results in a unique graph and is therefore \(O(1)\) in all scenarios.

In Definition 7.30, we gave an informal definition of \(k\)-error operations on the basis of \(k\)-change operations on dependency trees. We will now restate this definition formally so that it is compatible with the elementary parsing operations for DG graphs introduced in this section.

Definition 7.57. Let \(\pi = (\pi_1, \ldots, \pi_k)\) be a sequence of \(k\) elementary parsing operations that apply to the nodes \(n_1, \ldots, n_k\) in a graph \(G\) to produce a sequence \((G_0, \ldots, G_k)\) of graphs given by \(G_0 = G\) and \(G_i = \pi_i(G_{i-1})\). Then \(\pi\) is called a \(k\)-error operation provided (a) \(n_1\) is blamed by a cost function that signals a dynamic error in \(G\), but no error in \(G_1\) (cf. Definition 7.27); (b) each \(n_i\) with \(i > 1\) is affected by the parsing operation \(\pi_{i-1}\) (cf. Definition 7.29); (c) each \(n_i\) is blamed in \(G_{i-1}\) by some cost function that signals a static error in \(G_{i-1}\), but no error in \(G_i\); and (d) no elementary parsing operation \(\pi_i\) deletes edges, filler nodes, or lexeme choices introduced by
7.3. An efficient set of parsing operations

We believe Mary wept

Figure 7.12: Analysis of “We believe Mary wept” after addition of “wept”.

Figure 7.13: Search graph for k-error operations applied to Figure 7.12.

another parsing operation π_j.

The following example demonstrates how k-error operations work.

Example 7.58. Figure 7.12 shows the analysis of “We believe Mary wept” right after the word “wept” has been added to the graph. Since parsing is incremental, “Mary” is analyzed as the direct object of “believes” at this point. Figure 7.13 shows the search graph for k-error repair, ie, the sequences of elementary parsing operations that are compatible with a k-error operation. Each node in the search graph corresponds to a unique analysis (search state) labelled from 0 to 15, where 0 is the initial graph. Each edge in the search graph corresponds to an elementary parsing operation, and the edge label indicates the changes with respect to lexemes, edges, and filler nodes effected by the elementary parsing operation. The search graph can be a non-tree, as evidenced by search state 12 which can be reached both via search state 9 and search state 10 (ie, search state 12 represents a transposition).

The chart in Figure 7.14 gives detailed information about each search state, listing its parent id, the elementary parsing operation used to create the state, the error that was resolved by the parsing operation, the errors in the new graph (with new errors in italic), and the nodes affected
by the parsing operation. For simplicity, we have assumed that the lexical entry for “believe” licenses two complement frames “subj+dobj” and “subj+vobj”, that “wept” licenses a single complement frame “subj”, and that no other words take any complements. Furthermore, we will assume that a missing landing site or governor at a node \(n \) triggers the error \(n_{\text{noland}} \) or \(n_{\text{nogov}} \), that a landing site \(l \) with a landed node \(n \) without a governor triggers the error \(l_{\text{badland-}n} \), that a governor \(g \) with a complement \(c \) that is not licensed by the active complement frame triggers the error \(g_{\text{badcf-c}} \), that an island \(i \) that detects an illegal extracted edge \(h \xrightarrow{\text{ext}} \) triggers the error \(i_{\text{ext(h-\text{ext})}} \), that a landing site \(l \) with a discontinuous surface yield triggers the error \(l_{\text{badyield}} \), that a bad word order at a landing site \(l \) triggers the error \(l_{\text{badwo}} \), that a governor \(g \) with two complements \(c_1 \) and \(c_2 \) that fill the same complement role trigger the error \(g_{\text{dblcf-c_1+c_2}} \), and that a dependent \(d \) with a governor \(g \) but no landing site triggers the error \(d_{\text{badgov-g}} \).

For example, search state 1 is created by applying an \textit{lsite-add(2 land 4)} operation to state 0, thereby resolving the error \(2_{\text{noland}} \) and producing a
new error $4^{\text{badland-2}}$ because node 4 lacks a governor. The operation affects nodes 2 and 4, i.e., the next elementary parsing operation in the k-error sequence must apply to either node 2 or 4, and resolve at least one of the errors listed in the chart for state 1. Figure 7.12 and 7.15 show the analyses corresponding to states 1, 12, 14, and 15.

From the worst-case number of graphs produced by individual parsing operations, we can now estimate the time complexity of composite parsing operations such as k-change, k-rconnect, k-displace, and k-error.

Remark 7.59. To estimate the maximal number of graphs produced by each composite parsing operation, we let m denote the maximal number of graphs that can be produced by one application of an elementary parsing operation, we let u be the maximal number of nodes where the cost needs to be recomputed after one application of an elementary parsing operation, we let b denote the maximal number of nodes that can be blamed by a single error, and we let e denote the maximal number of simultaneous dynamic error nodes in a graph at any time. Figure 7.17 shows the maximal number of graphs produced by each composite parsing operation, and the upper bounds for the variables m, u, b, and e in scenarios S1–S4.
To estimate the number of graphs produced by the different composite parsing operations, we note that a \(k \)-change operation can produce at most \(n^k m^k \) different graphs, since for each elementary parsing operation we have a choice between \(n \) nodes and at most \(m \) different parsing operations. Similarly, a \(k \)-connect operation can produce at most \((k-1)!ed^{k-1}m^k \) different graphs, since we must first choose one of the at most \(e \) initial error nodes and one of the at most \(m \) different parsing operations at that node, and for the \(i \)th subsequent parsing operation, we must choose one of the at most \((i-1)d \) nodes in the neighbourhoods of the first \(i-1 \) nodes and one of the at most \(m \) parsing operations at that node, resulting in the upper bound \(em \cdot (1dm) \cdots ((k-1)dm) = (k-1)!ed^{k-1}m^k \). Finally, a \(k \)-error operation can produce at most \(e(bm)^k u^{k-1} \) different graphs, since we must first choose one of the at most \(e \) dynamic errors and one of the at most \(b \) nodes blamed by the error, then choose one of the at most \(m \) different elementary parsing operations at the initial node, and for each of the \(k-1 \) subsequent parsing operations, we must choose one of the at most \(ub \) different affected nodes produced by the preceding parsing operation and one of the at most \(m \) different elementary parsing operations at the chosen node, resulting in the upper bound \(eb \cdot m \cdot (ubm)^{k-1} = e(bm)^k u^{k-1} \).

We will now calculate upper bounds for the variables \(m, u, b, e \). Since \(m \) is the sum of the number of graphs produced by each family of elementary parsing operations, \(m \) has the same complexity as the worst elementary parsing operation in Figure 7.11, ie, \(m \) is \(O(n^2) \) in scenario S1, \(O(n) \) in S2, and \(O(\log n) \) in S3 and S4. To obtain an upper bound for \(u \), note that the cost operators listed in Figure 2.2, 2.3, and 3.1 are designed so that a change at a node can only affect its immediate neighbours in the graph,
its adjacent nodes in the linear order, and the nodes on its extraction path. This means that a change at a node can affect the cost functions of at most
\(d + 2 + E \) where \(E \) is the maximal length of an extraction path if the cost functions consist of a single cost operator, and at most \((d + 2 + E)^\kappa\) nodes if the cost functions consist of at most \(\kappa \) cost operators. Noting that \(u \) is always bounded by \(n \), and that \(E \) is at most \(O(p) \) with \(E = 1 \) in S4, and combining these observations with the upper bounds for \(d \) and \(p \), we see that \(u \) is \(O(n) \) in S1, \(O(\log^\kappa n) \) in S2–S3, and \(O(1) \) in S4. However, in practice we believe that \(\kappa \) is effectively 1 for any reasonable grammar — ie, if cost updates are managed carefully, we only need to recompute the costs of at most \(O(\log n) \) nodes after each elementary operation. For this reason, we will assume \(\kappa = 1 \). To obtain an upper bound for \(b \), we note that a node that is blamed by a cost function must be reachable by that cost function, ie, \(b \) must be bounded by \(u \) so that \(O(b) = O(u) \). This gives the stated bounds for \(b \). Finally, to obtain an upper bound for \(e \), we will assume that all cost functions are dynamic and that \(n \) is proportional with the elapsed time \(t \).

Footnote 5 on p. 101 shows that a dynamic error at a particular node is in the worst case repaired at the times \(t_i^j \) for \(i = 1, \ldots, \infty \), ie, the dynamic error occurs at most \(O(\log n) \) times during the entire parsing. Since the parsing consists of at least \(n \) operations, we see that the probability of a repair of a given dynamic error in a given parsing operation is at most \(O(n^{-1} \log n) \). Since there are \(n \) different nodes with \(O(n) \) different cost functions, we see that the expected number \(e \) of dynamic error nodes in the graph at any given time is at most \(O(n \cdot n^{-1} \log n) = O(\log n) \).

Remark 7.60. The upper bounds for \(k \)-error operations shown in Figure 7.17 are highly pessimistic. In practice, the requirement that an elementary parsing operation must be affected by the preceding parsing operation and resolve an error rules out most of the possibilities. For example, we obviously cannot resolve an agreement error or a missing landing site by adding a new complement to a node. This is also the reason why the search graph for \(k \)-error parsing in Figure 7.13 is relatively small — and far smaller than the corresponding search graph for \(k \)-econnect operations. Our upper bounds do not take this into account, and for this reason, \(k \)-error appears to be more inefficient than \(k \)-econnect in terms of worst-case time complexity, although in practice, we believe that \(k \)-error is far better than its worst-case estimates, and significantly more efficient than \(k \)-econnect.

Remark 7.61. We can create a local optimality parser by searching for
local improvements within a given family of parsing operations such as k-change, k-connect, or k-error. To compute the time complexity of k-change, k-connect, and k-error parsing, we note that for each graph produced by one of these operations, we need to recompute the cost of at most \(u \) different nodes. Assuming that each cost function can be computed in constant time, a cost computation therefore takes \(O(u) \) time. Moreover, following Remark 7.34, we will assume that a parser always terminates after at most \(O(n) \) operations, ie, the time complexity of the parser can be computed by multiplying the time complexity of the family of parsing operations with \(n \) and the time needed to update the costs, ie, by \(O(un) \). This results in the worst-case time complexities shown in Figure 7.18.

Remark 7.62. The upper bounds for k-change, k-connect, and k-error parsing in Figure 7.18 show that the restrictions we have placed on the graphs in scenarios S1–S4 are important for making these parsers computationally efficient: in scenario S2, where we impose bounds on the height of the graph and the degree of nodes in the graph, the worst-case time complexity of k-error parsing falls from \(O(n^{4k+1} \log n) \) to \(O(n^{k+1} \log^{2k+1} n) \). In scenario S3, where we also require the existence of island constraints that restrict the possible extraction paths to a singular spine of extraction, the time complexity falls to \(O(n \log^{3k+1} n) \). This means that if human parsing is based on k-error parsing, there is strong evolutionary pressure on human languages to develop island constraints, thereby giving an alternative explanation for the existence of island constraints: they are not hard-coded in the human brain, but a consequence of the evolutionary pressure on all languages for making parsing as computationally efficient as possible.

So far, we have defined k-error parsing so that the parser must try all k-error parsing operations available to it in order to find the best possible improvement of the current analysis. However, if the parser tries to eliminate a given error and quickly finds a parsing operation that resolves

<table>
<thead>
<tr>
<th>S1</th>
<th>S2</th>
<th>S3</th>
<th>S4</th>
</tr>
</thead>
<tbody>
<tr>
<td>k-change</td>
<td>(O(n^{3k+2}))</td>
<td>(O(n^{2k+1} \log n))</td>
<td>(O(n^{k+1} \log^{k+1} n))</td>
</tr>
<tr>
<td>k-connect</td>
<td>(O(n^{3k+1} \log n))</td>
<td>(O(n^{k+1} \log^{2k+1} n))</td>
<td>(O(n \log^{k+1} n))</td>
</tr>
<tr>
<td>k-error</td>
<td>(O(n^{4k+1} \log n))</td>
<td>(O(n^{k+1} \log^{2k+1} n))</td>
<td>(O(n \log^{3k+1} n))</td>
</tr>
</tbody>
</table>
it while improving the total cost of the analysis, it may be unnecessary to search through the entire neighbourhood for an even better alternative analysis. To address this problem, we will introduce a family of greedy k-error operations that can be used as an alternative to k-error.

Definition 7.63. Let a be an analysis, and let \prec be a search-ordering on the set of all k-error operations on a. Given a dynamic error e in a, we will say that a k-error operation π is greedy with respect to \prec and e in a if (a) it resolves e while improving the total cost of the graph, and (b) it is the first parsing operation with this property in the order given by \prec.

Remark 7.64. There are many ways to define a search-ordering on the set of k-error operations. For example, we get a best-first search if we use the cost of the resulting analyses as the primary sorting criterion, and an iterative deepening search if we use the number of parsing operations as the primary sorting criterion. We can get a probabilistically guided search by keeping track of past successes and failures so that we can estimate the probability that a given sequence of parsing operations will resolve a given error, or calculate the expected gain of applying a given sequence of elementary parsing operations. We can also use a combination of these criteria to define the search order. Finding the best search strategy is a matter of experimentation which we will leave to future research.

Remark 7.65. The k-error search can be improved in other ways as well. To avoid performing the same search twice, we can use a transposition table to keep track of sequences of parsing operations that are equivalent (equivalence is quite easy to test since each k-error parsing sequence is characterized uniquely by the set of edges and filler nodes that are deleted, the set of edges and filler nodes that are added, and the set of lexeme changes). Likewise, we can constrain the memory resources allocated to the search by discarding the least plausible choice points, resulting in a beam search. Finally, we can get an any-time algorithm by stopping the search at any desired time and using the currently best improvement — this allows us to terminate the search quickly when computational resources are scarce, or in response to external events.

Remark 7.66. We can also make greedy k-error parsing faster by using a first-improvement strategy where we try to resolve dynamic errors with large error ratios relative to the threshold before we proceed to smaller
Chapter 7. Local optimality parsing

ones. This strategy requires us to stop the search once we have resolved an error and found an improved analysis. Stopping the search after the first improvement rather than proceeding until we know that no other improvement is better is a sensible strategy, since the parser will have to confront the remaining dynamic errors in the next parsing step anyway. In most applications, we expect the advantage in speed will outweigh the slightly increased risk of arriving at a suboptimal error-free analysis.

In this section, we have defined the elementary parsing operations used in DG, and computed their time complexity in four different scenarios. We have also defined k-error operations formally, and computed their time complexity. We have shown that in a linguistically realistic scenario with balanced graphs and island constraints (S3), the worst-case time complexity of k-error parsing is $O(n \log^{3k+1} n)$ — ie, k-error operations are (at least theoretically) a computationally efficient basis for local search. Finally, we have sketched how the average-case processing time of k-error operations can be improved by means of a number of different search strategies. In the following, we will argue that DG parsing is compatible with the psycholinguistic evidence about head-driven parsing, and that k-error operations are powerful enough to handle a wide variety of linguistic phenomena.

7.4 A head-driven model of human parsing

Summary. We present a DG-based model of human parsing that includes a formal top node that can act as the landing site for unanalyzed nodes and a set of restrictions on landing sites for unanalyzed nodes. We then present a number of psycholinguistic experiments that have been claimed to provide counter-evidence against all forms of head-driven parsers. We argue that this conclusion is based on overly restrictive assumptions about head-driven parsing, and describe how the DG parser accounts for the experimental results.

The DG parser has many properties that makes it an attractive candidate for psycholinguistic parsing: it is strictly incremental, it is based on serial parsing with repair (cf. Hopf et al. 2003), it deals robustly with ungrammatical input, it has almost-linear time complexity and linear space complexity, and it leads to a natural explanation of island constraints and garden-paths. It is outside the scope of this dissertation to provide a full psycholinguistic evaluation of DG. However, since DG is head-driven — ie, it never attempts to predict edges between two nodes before both nodes
have been encountered in the speech signal — and since many outstanding psycholinguists have produced evidence that seems to contradict head-driven parsing (Bader and Lasser 1994; Mecklinger et al. 1995; Konieczny 1996; Kamide and Mitchell 1999; Miyamoto et al. 1999; Aoshima et al. 2003), we will explain why the DG parser belongs to a family of head-driven parsers that was not anticipated by these authors, and outline how DG can account for the apparent counter-evidence. However, the psycholinguistic experiments cited above place so many restrictions on head-driven parsing that they must be credited as a major inspiration in the construction of the parsing model presented in this section. In the following, we will present the assumptions behind our DG model of human parsing, including the introduction of a formal top node in the graph and restrictions on the creation and deletion of temporary landing edges.

Remark 7.67. We will assume that a DG graph always contains exactly one dummy node in initial position called \(\text{TOP} \). Moreover, we will assume that any utterance can attach itself to \(\text{TOP} \) as a root adjunct, that \(\text{TOP} \) licenses any root adjunct as a landed node with edge type \(\text{land} \), and that the parsing operations are designed so that \(\text{TOP} \) surface dominates all nodes in the graph at all times (cf. Remark 7.72).

Definition 7.68. A landing edge \(l \xrightarrow{e} n \) where \(e \) is a subtype of the surface edge type \(\text{land} \) is called a *temporary landing edge* with *temporary landing site* \(l \) and *temporary landed node* \(n \). The temporary landing edge is called *well-formed* if \(l \) precedes \(n \).

Temporary landing edges are licensed by a landing frame associated with the temporary landing site. In language learning, we are interested in identifying the lowest possible node that can function as a temporary landing site for a node that comes before its permanent landing site.

Definition 7.69. Let \(n \) be a non-top node in a graph \(G \). The lowest surface edge \(s \xrightarrow{e} s' \) with \(s < n \leq s' \) is called the *roof edge* for \(n \), and \(s \) is called the *preliminary landing site* for \(n \).

Because the surface tree is continuous and \(\text{TOP} \) surface dominates and precedes all other nodes, every non-top node has a unique roof edge and preliminary landing site.

Remark 7.70. Temporary landing frames can be deduced automatically from a dependency treebank by assuming that if the permanent landing
site does not coincide with the preliminary landing site, then the preliminary landing site is used as a temporary landing site for the node until the permanent landing site and governor is added to the graph. The treebank can also be used to calculate word order probabilities for temporary landed nodes relative to other landed nodes at the landing site.

Example 7.71. Figure 7.19 shows a deep tree without fillers (top) and the associated preliminary landing sites (bottom) marked with dotted tland edges if the preliminary landing site does not coincide with the permanent landing site, and with solid land edges otherwise. The tree formed by the preliminary landing edges can be viewed as the minimal surface tree in which all landing edges point forward.

We can now propose a set of modifications to the parser that makes it compatible with the psycholinguistic evidence about head-driven parsing.

Remark 7.72. We will assume that the DG parser is modified so that it always respects the constraints stated below. The first two constraints ensure that all nodes in the graph are surface dominated by TOP at all times.

- **HP1. Node addition at lowest temporary landing site**: when adding a node \(n \) to the graph, the parser must create the surface edge \(l \xrightarrow{\text{land}} n \) where \(l \) is the lowest temporary landing site dominated by the right boundary of TOP, or TOP if no such temporary landing site exists.
- **HP2. Landing site deletion ban**: an \(\text{lsite-del} \) operation cannot delete the landing site of a node \(n \) unless it is immediately followed by an operation that creates a new landing site for \(n \).
The following constraint ensures that temporary landing sites can only appear in the right periphery of TOP (ie, at a node that non-strictly dominates the right boundary of TOP). The underlying intuition is that at temporary landing sites, we are waiting for the arrival of a new landed node that will make an analysis of the temporary landed nodes possible, and if the graph is changed in a way where the temporary landing site is no longer at the right periphery, then continuity makes it unavailable as a landing site for a newly arrived node — ie, the temporary landed nodes will remain unanalyzed forever.

- **HP3. Right-peripherality of temporary landing sites**: landing site operations must ensure that all temporary landing sites are located in the right periphery of TOP.

The following constraint ensures that a node cannot lack a governor without having a temporary landing site (this does not preclude the possibility that a temporary landed node has a governor).

- **HP4. Temporary nature of ungoverned nodes**: a sequence of parsing operations is illegal if it results in a node that has a non-temporary landing site, but lacks a governor.

The following constraint ensures that once a node \(n \) is analyzed as a temporary landed node, this analysis cannot be changed before all landed nodes at the landing site have a governor, with two exceptions: we assume that the reanalysis is safe if the new landing site precedes \(n \), or if \(n \) is the only left landed node of its new landing site.

- **HP5. Temporary landed node endurance**: a temporary landing site \(l \) for a node \(n \) cannot be replaced with a new landing site \(l' \) unless (a) \(l' \) precedes \(n \); (b) \(l' \) follows \(n \) and \(l' \) has no other left landed nodes or dependents; or (c) \(l' \) follows \(n \) and all temporary landed nodes at \(l \) have a governor.

Finally, the following modification of the \(\text{extract}(a) \) cost operator ensures that we ignore island constraint violations at the top edge \(l \rightarrow l' \) of the extraction path for a temporary landed node \(n \) with \(n < l' \) — ie, the island cost is temporarily ignored if it would disappear if \(l' \) was analyzed as the permanent landing site for \(n \).

- **HP6. Extraction path for temporary landed nodes**: in the extraction path for a temporary landed node \(n \) with temporary landing site \(l \),
any edge from \(l \) to a node \(l' \) with \(n < l' \) is invisible to the \(\text{extract}(a) \) cost operator.

The psycholinguistic evidence described in the following remarks place severe constraints on the kinds of head-driven parsers that can be used as models of human parsing, and rules out a great number of head-driven parsers proposed in the literature. However, the claim that this evidence rules out all head-driven parsers and proves that parsing must be predictive (ie, that the parser must predict the existence of heads before they have been encountered in the input) is based on the false premise that head-driven parsers always favour attachment to the first appearing potential governor in the speech signal. This is not necessarily true for head-driven parsers like the DG parser that take landing sites into account, and these parsers therefore deserve serious consideration as potential models of human parsing. Indeed, since it is widely recognized that it is difficult to formulate a predictive parsing model without overprediction and under-prediction,\(^3\) the lack of a predictive mechanism in the DG parsing model can actually be interpreted as an advantage.

Remark 7.73. Bader and Lasser (1994) argue against head-driven parsing on the basis of local ambiguities in German such as (67) and (67′), where the initial pronoun can be interpreted either as the subject of the main verb or as the direct object of the subordinate verb, respectively. Their measurements show that (67′) leads to strong garden-path effects, whereas (67) does not lead to any processing difficulty. They assume that a head-driven parser leads to the opposite prediction, ie, that the subordinate verb is the preferred attachment site because it precedes the main verb.

\begin{align*}
(67) & \quad \ldots, \text{daß sie}_{\text{nom}} \ldots \text{[zu fragen]} \text{erlaubt hat.} \\
& \quad \ldots, \text{that she} \ldots \text{to ask} \text{ permitted has.} \\
& \quad \text{‘that she has given permission to ask ...’} \\
(67′) & \quad \ldots, \text{daß [sie}_{\text{acc}} \ldots \text{zu fragen]} \text{erlaubt worden ist}. \\
& \quad \ldots, \text{that her} \ldots \text{to ask} \text{ permitted been is.} \\
& \quad \text{‘that permission has been given to ask her ...’}
\end{align*}

\(^3\)In a review article, Phillips and Lau (2004) write about predictive parsers that “a long-standing challenge for this type of parser has been to constrain the predictive mechanisms in such a way that they do not overgenerate possible structure”.

However, these results are not incompatible with the DG model of human parsing. Figure 7.20 shows two stages in the DG parse of the shared part of (67) and (67'). The edge labels indicate the step at which the edge was created and possibly deleted, incremented for each edge modification — for example, the edge label “tland:2–9” indicates that the edge was created in step 2 and deleted in step 9.

In step 1, the word “sie” is added to the graph and analyzed as a temporary landed node of “daß” because there is no suitable governor in the graph yet. In step 2, the word “zu” is added to the graph and analyzed as a temporary landed node of “daß”. In steps 3–4, the word “fragen” is added to the graph and analyzed as a landed verbal object of “zu”. At this point, the parser can reanalyze “sie” as the direct object of “fragen” with landing site “zu”. While this reanalysis resolves the error that “sie” does not have a governor (an error with a low dynamic error cost because subjects often do not receive a governor that quickly), it also turns “zu” into the only temporary landed node at “daß”. This is bad because “daß” is rarely observed as a preliminary landing site for “zu” infinitives, and for that reason, the parser sticks with its original analysis. In steps 5–6, the word “erlaubt” is added to the graph and analyzed as a landed verbal object of “daß”. Now “sie” can be analyzed as the subject of “erlaubt” in step 7, and “zu” can be analyzed as the direct object of “erlaubt” in step 8. The resulting analysis is shown in Figure 7.20 (left). Now both temporary landed nodes have a

4Bader and Lasser do not seem to have noticed that “erlaubt” is ambiguous between a perfect tense reading and a third person present tense reading.
daß sie zu fragen erlaubt hat
dobj:8 vobj:4 vobj:14
dobj:8 vobj:4 vobj:14
land:10 land:3 land:13
land:12–20 land:16 land:21
land:12–20 land:16 land:21
0 1 2 3 4 5

Figure 7.21: The subsequent steps in the DG parse of (67).

governor, so HP5 does not block a modification of their landing sites. In steps 9–10, “zu” is therefore reanalyzed as a permanent landed node of “erlaubt”, and in steps 11–12, “sie” is reanalyzed as a permanent landed node of “erlaubt”. The resulting analysis is shown in Figure 7.20 (right).

Figure 7.21 shows the subsequent steps in the DG derivation of (67). In steps 13–14, the word “hat” is added to the graph and analyzed as a landed verbal object of “daß”. Since “daß” cannot have two verbal objects, “erlaubt” is reanalyzed as a perfect tense verb that functions as landed verbal object of “hat” in steps 15–18. Since perfect tense verbs cannot have a non-filler subject, “sie” is reanalyzed as landed verbal subject of “hat” in steps 19–22. At this point, the parser can also analyze “sie” as the direct object of “fragen”, but this is suboptimal because “hat” would then lack a subject. Finally, the parser will analyze “sie” as the filler subject of “erlaubt” (not shown in Figure 7.21). The analysis of (67) is therefore unproblematic in the DG parser.

In contrast, even the two most optimistic and direct DG parses of (67′) shown in Figure 7.22 and 7.23 require much more extensive reanalysis. In step 13, the word “worden” is added to the graph and analyzed as a temporary landed node of “daß”. In steps 14–15, the word “ist” is added to the graph and analyzed as a landed verbal object of “daß”. In steps 16–18, “worden” is reanalyzed as the landed verbal object of “ist”. Alternatively, the parser could reanalyze “erlaubt” as the verbal object of “ist”. Alternatively, the parser could reanalyze “erlaubt” as the verbal object of “ist”, but this would lead the parser astray. In steps 19–22, “erlaubt” is reanalyzed as the landed verbal object of “worden”. The parser now has two choices
that will lead to reasonable analyses. In analysis A (shown in Figure 7.22), “sie” is reanalyzed as the subject of “hat” and “erlaubt” is reanalyzed as an indirect-object passive in steps 23–26. Alternatively in analysis B (shown in Figure 7.23), “sie” is reanalyzed as the direct object of “fragen” with landing site “zu” in steps 23–26; in steps 27–30, “zu” is then reanalyzed as the subject of “ist”, and “erlaubt” is reanalyzed as a direct-object passive.

Compared with the DG parse of (67), which requires 10 edge modifications after the addition of “hat”, the A and B parses of (67’) require 14 and 18 edge modifications after the addition of “worden ist”, and the derivation
contains a larger number of choice points. Without a large-scale implementation of DG, it is difficult to determine whether the search graph for (67′) is so much larger than the search graph for (67) that the DG parser would predict a strong garden-path, but it would not be surprising if it did lead to this prediction. For this reason, the DG model of human parsing can be expected to be compatible with the psycholinguistic evidence presented by Bader and Lasser.

Remark 7.74. Mecklinger et al. (1995) argue against head-driven parsing on the basis of a self-paced reading and ERP-response experiment in which they examine local ambiguities in German such as (68) and (68′), where the relative pronoun is locally ambiguous between a subject reading and an object reading, but where number agreement at the relative verb forces one of the two readings. Their measurements show an increased processing load at object relatives compared to subject relatives, which they interpret as a predictive commitment to a subject reading.

\[(68)\] Das sind die Professorinnen, die die Studentin gesucht haben. These are the professors who the student sought have\textsubscript{pl}.

‘These are the professors who have sought the student.’

\[(68′)\] Das ist die Professorin, die die Studentinnen gesucht haben. This is the professor who the students sought have\textsubscript{pl}.

‘This is the professor who the students have sought.’

The DG parses of (68) and (68′) are shown in Figure 7.24 and 7.25. In both parses, the phrase “die Studentin(nen)” is analyzed as a direct object of
“gesucht” in steps 8–10 right after “gesucht” has been added to the graph, in accordance with HP5(b). The parser cannot assign a subject to “gesucht” because perfect tense verbs do not license non-fillers, and word order constraints at the temporary landing site “die Professorin” prevents it from analyzing the initial relative pronoun “die” as the direct object of “gesucht”. In (68), the direct object analysis turns out to be correct, whereas in (68’), “die Studentinnen” must be reanalyzed as the subject of “haben”, thereby accounting for the increased processing load observed by Mecklinger et al.

Remark 7.75. According to Konieczny (1996, p. 102), Steinhauer and Friederici have conducted an ERP-study of sentences with non-canonical word order such as (69), where an accusative NP comes before the nominative subject NP. Their results show that the non-canonical word order triggers an increased P600 at the accusative NP “den Professor”. Since the P600 is believed to signal syntactic reanalysis, they interpret this as evidence for predictive attachment processes before the arrival of the verb.

(69) Daß den Professor der Student gesucht hat,...
That the dat professor the nom student sought has,...
‘That the student has sought the professor,...’

Since “den” is analyzed as a temporary landed node of “daß” as soon as it is added to the graph, the temporary landing site “daß” will immediately detect the unusual word order of having an accusative NP as the first temporary landed node. This may trigger a small error at the temporary landing site, which may have the effect that the parser will try slightly
harder to search for an alternative landing site. The DG parser is therefore compatible with the effect observed by Steinhauer and Friederici.

Remark 7.76. Kamide and Mitchell (1999) argue against head-driven parsing on the basis of a questionnaire study and a self-paced reading experiment with Japanese attachment ambiguities such as (70), where a dative NP can attach either to the relative verb (low attachment) or to the main verb (high attachment), provided the verb licenses a dative object; the verbs “kasita” (“lent”) and “miseta” (“showed”) license a dative object, “yabutta” (“tore”) does not. Their results show that the dominant reading is to interpret the dative NP as the indirect object of the main verb, and that examples that are only compatible with the LA reading have an increased processing load compared to examples that are compatible with the HA reading. In their view, “this suggests that the parser must have been unravelling a commitment already made prior to this point – namely a link between the dative NP and the as-yet-unread matrix verb”.

(70) *Kyooju-ga gakusee-ni toshokansisho-ga kasita/yabutta Professor\textsubscript{nom} student\textsubscript{dat} librarian\textsubscript{nom} lent/tore mezurasii komonjo-o miseta/yabutta. unusual ancient manuscript\textsubscript{acc} showed/tore.*

‘The professor showed/tore [the student]\textsubscript{HA} the unusual ancient manuscript which the librarian had lent/torn [the student]\textsubscript{LA}.’

The DG parse of an ambiguous LA+HA version of (70) is shown in Figure 7.26, and the DG parse of an unambiguous LA version of (70) is shown in Figure 7.27. In both parses, “gakusee-ni” is initially analyzed as the indirect object of the first verb “kasita” in step 9, but because of HP5, its temporary landing site TOP remains unchanged.\(^5\) For this reason, the attachment is undone in step 15 after “kasita” has been reanalyzed as a relative verb governed by “komonjo-o” in steps 13–14, otherwise the extraction out of the relative clause would violate the adjunct island constraint. After step 21, where the second verb “miseta/yabutta” has been added to the graph and “komonjo-o” has been analyzed as the direct object and “kyooju-ga” as the subject of the second verb, the parser must find a governor for “gakusee-ni”. In the LA+HA sentence, “gakusee-ni” can be analyzed as

\(^{5}\)The initial analysis of “gakusee-ni” as the indirect object of the first verb accounts for the filled gap effect observed by Aoshima et al. (2003) in their first experiment.
7.4. A head-driven model of human parsing

Figure 7.26: The DG parse of an LA+HA version of (70).

Figure 7.27: The DG parse of an LA version of (70).

the indirect object of both verbs. However, at this point, it still has “TOP” as its temporary landing site, so because of the adjunct island constraint, the search for a potential governor is likely to stop at the main verb. For this reason, a preference for the HA reading can be expected. In the LA sentence, the unavailability of the main verb as the governor of “gakusee-ni” forces the parser to try the relative verb “kasita” as a potential governor; in steps 23–24, the island violation is resolved by reanalysing “gakusee-ni” as a landed node of “kasita”, according to HP5(c). The behaviour predicted by the DG parser is therefore compatible with the effects reported by Kamide and Mitchell.

Remark 7.77. Miyamoto et al. (1999) argue against head-driven parsing
on the basis of a self-paced reading experiment with Japanese attachment ambiguities of the form “RC N₃ P N₂ P N₁” exemplified by (71), where a relative clause is followed by three potential attachment sites N₃, N₂, N₁.

‘The bicycle behind the person beside the bush that [has a broken branch] / [I met at the party] / [I rode to school] was pretty and big.’

The preferred reading (low, middle, and high attachment) is controlled by making only one of the three attachment sites semantically compatible with the relative clause. The experiments by Miyamoto et al. show that the LA reading is faster than the HA and MA readings in the N₃ region (with no difference between HA and MA), and that the HA reading is faster than the MA and LA readings in the N₂ and N₁ regions (with no difference between MA and LA). Miyamoto et al. explain this as a U-shaped preference that results from the interaction between a preference for LA (to make attachments as local as possible) and another preference for HA (to make attachments as close to the predicate as possible), so that MA is less favored than both LA and HA — a result that they view as incompatible with head-driven parsing.

The DG parses for the LA, MA, and HA versions of (71) are shown in Figure 7.28, 7.29, and 7.30. The most important difference between the parses is that in the LA parse, the relative clause can be reanalyzed as a permanent landed node of the noun it modifies as soon as the noun ap-
7.4. A head-driven model of human parsing

pears because of HP5(b), but because of HP5(c), this reanalysis of landing site is not possible before the appearance of the main verb in the MA and HA parses.

While we cannot offer detailed predictions about the time course of human parsing, we can at least show that it is quite possible for a DG parser to lead to the reading time rankings reported by Miyamoto et al., thereby removing the basis for their argument against head-driven parsing. For example, the DG parser will predict the observed rankings if we assume that the events C and T defined below always cause a fixed delay. C: following Miyamoto et al., we will assume that every preposition with a complex argument (i.e., a complement or governor that contains an embedded relative clause) causes a delay because of discourse complexity in the semantic
Figure 7.31: Hypothesized time-consuming events in different readings, and the predicted ordering with respect to reading time.

<table>
<thead>
<tr>
<th></th>
<th>N_3 P</th>
<th>N_2 P</th>
<th>N_1</th>
</tr>
</thead>
<tbody>
<tr>
<td>LA</td>
<td>T</td>
<td>C</td>
<td>$C + C$</td>
</tr>
<tr>
<td>MA</td>
<td>T</td>
<td>C</td>
<td>$C + C$</td>
</tr>
<tr>
<td>HA</td>
<td>T</td>
<td></td>
<td>C</td>
</tr>
<tr>
<td>Ordering</td>
<td>LA < MA = HA</td>
<td>HA < LA = MA</td>
<td>HA < LA = MA</td>
</tr>
</tbody>
</table>

In this section, we have presented a number of psycholinguistic experiments that have been claimed to provide evidence against all forms of head-driven parsing. We have shown that this claim is too strong: while the psycholinguistic evidence disproves many of the head-driven parsers proposed in the literature, the evidence does not rule out families of head-driven parsers that take landing sites into account. In particular, we have shown how the DG parser accounts for the apparent psycholinguistic counter-evidence. For this reason, head-driven parsing deserves serious consideration as an alternative to predictive parsing.
7.5 Evaluation of the DG system

Summary. We describe five different strategies for evaluating the DG system, and the steps we have taken in this direction. We then describe a preliminary evaluation of a simplified DG parser with 3-displace and a small manually created grammar for German which shows that k-error parsing is powerful enough to deal with a wide range of word order phenomena, but that the simplified implementation is too inefficient to work with a grammar that is induced from a treebank. For this reason, a real evaluation of DG must await a large-scale implementation of the theory.

The DG system can be evaluated from many different perspectives, including linguistic, psycholinguistic, statistical, and computational perspectives. In the following, we will describe the different evaluation strategies that the DG parser can be subjected to, and our work in this direction so far. Since most of the evaluation strategies require a computational implementation of the DG theory, and our implementation is still incomplete, a thorough evaluation of DG is unfortunately not possible yet.

Remark 7.78 (linguistic evaluation). The DG system can be evaluated with respect to its linguistic coverage, ie, with respect to the linguistic constructions that can be successfully analyzed, learned, and produced. For example, we can test whether a parser with a statistically induced DG grammar is capable of handling the wide range of constructions described in chapter 4: topicalizations, extrapositions, scramblings, control constructions, relatives, parasitic gaps, elliptic coordinations, punctuation, lexical alternations, etc.

Remark 7.79 (psycholinguistic evaluation). DG leads to specific predictions about repairs, garden-paths, and processing complexity. This allows the DG parser to be tested against the psycholinguistic evidence about human parsing (cf. Gernsbacher 1994), ie, to test whether DG makes the right predictions about the presence or absence of strong garden-paths, and whether the number of different graphs produced during DG parsing correlates with the processing times observed in eye-tracking experiments.

Remark 7.80 (analysis of precision, recall, and generative adequacy). The DG system can be evaluated with respect to its labelled and unlabelled precision and recall, which measure the system’s ability to induce a grammar from a gold-standard and reproduce the gold-standard annotations from
this grammar. They are defined as $|P \cap G|/|P|$ and $|P \cap G|/|G|$, respectively, where G is the set of edges in the gold standard, and P is the set of edges produced by the parser. Precision and recall are a natural evaluation metric when comparing different DG language models and different sets of DG parsing operations with each other, or when comparing the DG parser with statistical state-of-the-art dependency parsers such as the head-driven probabilistic context free parser by Collins (1997), the memory-based projective dependency parser by Nivre et al. (2004), and the unsupervised statistical dependency parser by Klein and Manning (2004).

In order to test the system’s ability to avoid generating analyses which humans deem ungrammatical, we should also test its generative adequacy, which we tentatively define as the probability that the local neighbourhood around a word in a randomly generated analysis will be considered grammatical by an average human speaker.

Remark 7.81 (error analysis). The discrepancies between the analyses produced by a statistical DG system and the gold standard can be divided into grammar errors where the gold-standard analyses fails to be optimal with respect to the induced grammar, parser errors where the parser’s analyses are suboptimal with respect to the induced grammar, treebank errors where the gold-standard contains errors of annotation, and real ambiguities where the discrepancies between the gold-standard and the parser are caused by real ambiguities in the text that cannot be easily resolved (ie, the parser’s analysis and the gold-standard analysis are equally sensible). An examination of where these errors occur and how often is important for determining where the DG system fails, and how it can be improved.

Remark 7.82 (complexity analysis). A statistically induced grammar can also be used to evaluate the computational properties of the parser, such as the average-case time complexity for different families of parsing operations or the average size of the search space in k-error operations as a function of k. The time-complexity is particularly relevant for DG, where the parser is assumed to operate on entire discourses rather than isolated sentences. This also means that the parser should ideally be tested on a discourse treebank constructed along the lines presented in section 4.5.\(^6\)

\(^6\)The Center for Computational Modelling at the Copenhagen Business School is currently planning the creation of a discourse treebank on top of the Danish Dependency Treebank.
7.5. Evaluation of the DG system

We have already performed most of the evaluations that can be performed without a computational implementation of the theory: in chapter 4 we have provided analyses for a wide range of linguistic phenomena; in section 7.4 we have evaluated the DG parser with respect to the psycholinguistic evidence about head-driven parsing; and in section 7.3 we have computed the worst-case time complexity of different versions of the DG parser. However, most aspects of the five evaluation strategies require a fully working DG system. Although we do not have a fully working system yet, we have taken many of the required steps: we have created the DG-based Danish Dependency Treebank as our training material and gold-standard (cf. section 4.8), we have created a small-scale Prolog implementation of the DG theory (Kromann 2001), and we are currently working on a large-scale Perl implementation of the theory within our DTAG treebank tool (Kromann 2005).\footnote{DTAG is written in Perl and PostScript and currently consists of 27,000 lines of source code. The full DG implementation is expected to require approximately 50,000 lines of source code. It will therefore take some time to complete the implementation. Compared with a probabilistic context-free parser such as (Collins 1997) or a probabilistic projective dependency parser such as (Nivre et al. 2004), the DG implementation suffers from the complexity of the underlying linguistic formalism.}

Remark 7.83. In our efforts to evaluate DG, we have written a DG parser in Prolog with three simplifications that make the parser easier to implement: the parser does not handle secondary dependencies, it is based on k-displace with $k = 1, 2, 3$, and it uses a best-improvement brute-force search strategy in each parsing step. We have evaluated the parser on two different grammars: a small manually created grammar for German and a large statistical grammar induced from the Danish Dependency Treebank. The statistical grammar is based on a simplified version of the probabilistic language model presented in section 6.2, but with empirical probabilities with deleted interpolation (cf. Collins 1997) rather than hierarchical partition models.

Remark 7.84. The manual DG grammar contains complement, adjunct, and landing frames as well as cost functions that encode word order, number and case agreement, selectional restrictions, island constraints, a weak preference for non-extraction, and a weak preference for short linear distances between nodes and their governors and landing sites. The evaluation of the simplified parser with the manual grammar (previously re-
ported in Kromann 2001) showed that 3-displace is powerful enough to parse a wide range of word-order phenomena and ambiguities, including topicalizations and partial verb phrases such as (72), extrapositions and scramblings such as (73), cross-serial dependencies such as (74), and local ambiguities such as (75) and (76).

(72) Ein Märchen erzählen wird er seiner Tochter können.
A fairy-tale tell will he his daughter be-able-to.
‘He will be able to tell his daughter a fairy-tale.’

(73) weil dem Publikum niemand versprochen hat, die Walzer zu spielen
because the-DAT audience nobody-NOM promised has, the waltzes to play
‘because nobody has promised the audience to play the waltzes’

(74) omdat Piet Marie de kinderen zag laten zwemmen
because Piet Marie the children saw let swim
‘because Piet saw Marie let the children swim’

(75) Die Walzer haben die Musiker erfreut.
The waltzes have the musicians pleased.
‘The waltzes pleased the musicians.’

(76) Die Walzer haben die Musiker gespielt.
The waltzes have the musicians played.
‘The musicians played the waltzes.’

As an illustration of how the DG parser handles these sentences, Figure 7.32 shows how the partial verb phrase (72) is parsed by the parser. The left column in Figure 7.33 shows the parsing operation that was selected as the minimal-cost operation in each step, the right column shows all the alternative operations, and the cost associated with each operation is shown in subscript. At each step, the selected operation is superior to the alternatives because of the number of roots, case markings, or selectional restrictions. Initially, the parser has to read words 1 (“ein-märchen”) and 2 (“erzählen”) before it can add any edges, resulting in a graph with cost 15.92. In steps 1–2, it identifies identifies 1 as a landed direct object of 2, etc. A reanalysis takes place in steps 9–12, where 6 (“können”) replaces 2 (“erzählen”) as the direct object of 3 (“wird”), and 2 is reanalyzed as a verbal object of 3. The parser, grammar, and the detailed parses of
7.5. Evaluation of the DG system

Figure 7.32: Simplified DG parse of the partial verb phrase (72).

<table>
<thead>
<tr>
<th>step</th>
<th>best operation</th>
<th>alternative operations</th>
</tr>
</thead>
</table>
Remark 7.85. We have also tested the simplified DG parser on a large-scale statistical grammar extracted from the Danish Dependency Treebank. The grammar has been created by extracting complement, adjunct, and landing frames from the treebank at the level of word classes. The resulting grammar is highly ambiguous — for example, there are 84 different complement frames for verbs, 17 for prepositions, 13 for nouns, and 10 for adjectives. Similarly, there are 11 different adjunct frames for verbs, 10 for prepositions, 13 for nouns, and 12 for adjectives.

However, with this level of ambiguity, the simplified parser cannot process sentences with more than 8–10 words. This is because it performs a brute-force search for local improvements, and because it computes the cost of the graph by reevaluating every node in the graph, which gives it a theoretical time complexity of $O(n^5)$. This shows that a simple-minded implementation of the DG theory does not work: in order to attain the theoretical worst-case time complexity of $O(n \log^{3k+1} n)$ for k-error parsing, we cannot use a brute-force search strategy in the local neighbourhoods, but need to use a best-first search strategy with an efficient implementation of graph updates and cost computations.

Remark 7.86. Since DG is a relatively complicated syntax formalism and the DG parser is quite difficult to implement, it is reasonable to ask whether the efforts we have put into DG are justified, given the existence of highly successful broad-coverage statistical dependency parsers such as Collins (1997), Charniak (2000), Yamada and Matsumoto (2003), Nivre and Scholz (2004), and Nivre and Nilsson (2005), and rule-based dependency parsers such as Tapanainen (1999), Schneider et al. (2004), and Foth et al. (2004).

At this point, it is by no means clear whether a DG system will turn out to be better than these systems with respect to precision, recall, and speed. However, although DG still remains to be implemented and evaluated, it also has some interesting features that does distinguish it from most of these parsers, thereby making it worth exploring further. First of all, the DG parser is based on a linguistically sophisticated probabilistic language model that models both discontinuous dependencies, secondary dependencies, gapping coordinations, and island constraints. Secondly, the use of local search in the DG parser means that it can cope with language models where exact parsing is NP-hard — it is therefore conceivable that it can be extended to known NP-hard problems, such as word alignment, without serious degradation of the time complexity. Finally, DG parsing holds
some promise as a model of human parsing. In these respects, DG at least has a potential to address some problems that not all of the other parsers have the potential to address.

In this section, we have described five strategies for evaluating the DG parser — linguistic evaluation, psycholinguistic evaluation, analysis of precision and recall, error analysis, and complexity analysis. We have described the steps we have taken in this direction so far, and used our simplified DG parser to show that \(k\)-displace operations (and hence \(k\)-error operations) are powerful enough to deal with many challenging word order phenomena. However, we have also shown that the poor time complexity of the simplified parser makes it unsuitable for a large-scale evaluation of DG parsing. For this reason, most aspects of the five evaluation strategies have to await the completion of a full implementation of DG. Finally, we have argued that although DG is a complicated theory and the DG parser is difficult to implement, its potential to solve some important problems in parsing and psycholinguistics means that it is a framework that deserves further exploration.

7.6 Summary

In this chapter, we have extended the local optimality parsing algorithm so that it can deal with unsegmented speech signals with multiple speakers and noise. We have argued that incremental parsing provides important information about the parsing operations employed by humans, and we have proposed different families of parsing operations (\(k\)-connect, \(k\)-displace, \(k\)-error) that can be used to model human parsing. We have given a formal definition of the elementary parsing operations used in DG parsing and \(k\)-error operations, and estimated their theoretical worst-case time complexity in different scenarios. These estimates show that \(k\)-error parsing has worst-case time complexity \(O(n \log^{3k+1} n)\) if the grammar defines a suitable set of island constraints, thereby explaining why island constraints seem to be universally present in all languages. We have also proposed a DG model of human parsing which uses temporary landing sites to explain the psycholinguistic results that have been argued to provide counter-evidence against head-driven parsing. Finally, we have described the ways in which the DG parser should be evaluated once it has been implemented, and the steps we have taken in this direction so far.
Chapter 7. Local optimality parsing
Part V

Conclusion
Chapter 8

Conclusion

We shall not cease from exploration
And the end of all our exploring
Will be to arrive where we started
And know the place for the first time.

T. S. Eliot, “Four Quartets”

In this chapter, we describe the current state of the field, what has been achieved in this dissertation, and what remains to be done. We describe what we view as the most important new contributions in the dissertation, and what we view as the most important weaknesses. Finally, we describe the formal requirements for the Danish doctoral degree.

8.1 The current state of the field

One of the central challenges in computational linguistics today is to formulate models of human language processing that are adequate from both a linguistic, statistical, computational, and psycholinguistic point of view — ie, models that can: (a) provide linguistically satisfactory analyses of natural language constructions and their grammaticality; (b) produce good statistical estimates of the relative frequency with which different constructions occur; (c) provide computationally efficient algorithms for parsing, generation, and grammar learning of text and speech; and (d) explain the
psycholinguistic evidence about human language processing.

There are many ways in which a theory may fail to resolve these four issues. Some of the most successful statistical parsing models are based on context-free grammar, which is rather crude from a linguistic point of view. Most sophisticated linguistic theories (including GB, LFG, HPSG, TAG, CCG, and Word Grammar) were originally devised as rule-based theories where probabilities or utilities do not play any role. Prompted by the need to perform disambiguation in parsing, many of these theories have subsequently been equipped with probability models with state-of-the-art performance in statistical parsing. However, these probability models often embody statistical independence assumptions that are rather crude from a linguistic point of view, which means that the probability models often fail to have the same linguistic qualities as the underlying formalisms.

Computational efficiency is a challenge for most sophisticated linguistic theories, and even for context-free grammars, parsers are currently confined to parsing sentence-sized, pre-tokenized, pre-tagged text segments where low-polynomial average-time complexity is enough to ensure reasonable computational performance. However, as the field shifts its attention to discourse and speech processing with robust, massively ambiguous statistically induced grammars, we will need to find computationally efficient algorithms for parsing general discourse-sized, unsegmented text and speech — a task which probably requires algorithms with almost-linear average time complexity in order to ensure reasonable computational performance.\(^1\)

The highly fragmentary and incomplete nature of the psycholinguistic evidence about human language processing makes it tempting to simply ignore the evidence altogether, and very few theories in linguistics and computational linguistics today have actually attempted to provide a full or even partial account of the psycholinguistic evidence. However, since the available psycholinguistic evidence is capable of ruling out many models of human language processing, it can be expected to provide important information about nature’s solution to the many unresolved challenges in computational linguistics, and it is therefore increasingly viewed as an area that deserves serious attention.

\(^1\)An $O(n^3)$ algorithm that works well for sentences with $n = 100$ is unlikely to be computationally feasible for discourses with $n = 100,000$.
In linguistics and computational linguistics today, the situation therefore seems to be that we are at a rather advanced stage with respect to the rule-based modelling of syntactic constructions and their grammaticality, but that we are only beginning to fill the gaps in our understanding of how to model the frequency of syntactic constructions and rephrase our notions of grammaticality in terms of frequency; of how to model the parsing of discourse-sized, unsegmented text and speech in a computationally efficient way; and of how to relate our linguistic models to the psycholinguistic evidence about human language processing.

8.2 What has been achieved

In this dissertation, we have presented a new linguistic theory, called Discontinuous Grammar, which we believe may have the long-term potential to resolve the linguistic, statistical, computational, and psycholinguistic issues (a)–(d) described above. The theory attempts to model how humans represent grammars and linguistic analyses, and how humans parse written and spoken language. It also includes a method for inducing probabilistic language models from annotated corpora, which is interesting both from a linguistic perspective because it can be viewed as a first step towards a full model of human language learning, and from a technological perspective because of its potential usefulness in natural language systems.

The new scientific contributions made in this dissertation fall in five main areas: the dependency formalism and the associated linguistic analyses, the local optimality parser, the statistical XHPM estimation algorithm, the probabilistic language model, and the axiomatic model of human communication. These are discussed in detail below.

The dependency formalism and the associated linguistic analyses

Rather than basing our work on an existing syntax formalism, we have developed a new dependency-based syntax formalism. Most of the design choices in this formalism have been dictated by the desire to provide the best possible basis for serial parsing with repair and for statistical language modelling. For example, we have chosen a dependency-based rather than phrase-structure based design because phrase-structure based formalisms lead to unnecessarily complex repair operations, ie, to large edit distances
between alternative readings in ambiguous sentences.

Most of the underlying intuitions behind the formalism have been borrowed from other syntax formalisms: the distinction between a continuous surface tree that determines word order and a possibly discontinuous deep tree that determines dependency relations; the complement-adjunct distinction; the principle of compositionality; the upwards movement principle; the notion of island constraints; the notion that the word order is controlled by landing sites; the use of fillers to encode secondary dependencies; the use of a productive lexicon with inheritance and lexical transformations; etc. Many of our analyses of particular linguistic phenomena are also inspired by the analyses made within other linguistic frameworks, even though the actual formulation may be slightly different because of the difference between the underlying frameworks.

However, our formalism also differs from most other syntax formalisms in important respects: eg, by its conception of grammar as a utility function expressed in terms of cost functions that can be used to encode probability models and violable linguistic constraints; by its linguistically motivated inventory of cost operators; by the details of its theory of movement and island constraints; by its analyses of sharing and gapping coordinations; by its analyses of parasitic gaps; by its analyses of inflectional morphology and lexical transformations such as passives and expletives; by its mechanisms for dealing with punctuation; by its mechanisms for dynamic feature functions and time-dependent cost functions; and by its conception of discourse structure, syntactic structure, and morphological structure as a single dependency structure augmented by anaphoric links.

In the dissertation, we have argued that the formalism is expressive enough to account for a wide range of linguistic phenomena, including various word order constructions (topicalizations, extrapositions, and scramblings), filler constructions (control, relatives, and parasitic gaps), elliptic coordinations (sharing and gapping), punctuation, discourse structure and anaphora, as well as lexical alternations and other aspects of morphology. We have also tried to demonstrate that the grammar can be expressed either in a rule-based manner using hand-crafted cost functions, or, preferably, in a probabilistic manner using a probabilistic language model with the same set of conditioning variables as in the manually crafted cost functions. We have thereby substantiated the theory’s claim to a reasonable degree of linguistic adequacy, our first desideratum for a linguistic theory.
8.2. What has been achieved

The local optimality parser

Rather than using an exact parsing algorithm where we ensure the computational feasibility by restricting the linguistic expressiveness of the syntax formalism or the probabilistic language model, we have argued that it is better to use a fast heuristic parsing algorithm that can be combined with arbitrarily complex language models, at the risk of sometimes ending up with a globally suboptimal parse (i.e., a garden-path analysis). We have argued that this risk is not as large as it may seem at first sight because ambiguities tend to be local, i.e., alternative analyses in a global or local ambiguity rarely differ with respect to more than 3 dependencies.

We have shown that it is possible to find heuristic parsing algorithms with the desired properties. In particular, we have proposed an incremental serial parsing algorithm with repair, called local optimality parsing, which constructs an analysis by means of a sequence of locally optimal structure-changing operations that only affect a small number of nodes in each step. We have proposed different families of parsing operations, such as k-connect, k-displace, and k-error, and argued that k-error seems to be powerful enough to be a useful basis for local optimality parsing. We have shown that local optimality parsing with k-error operations has worst-case time complexity $O(n \log^{3k+1} n)$ in a scenario with island constraints and balanced graphs, and $O(n^{k+1} \log^{2k+1} n)$ in a scenario without island constraints — that is, local optimality parsing does lead to almost-linear parsing, but island constraints are essential for achieving the almost-linear behaviour. If our model is true, this explains why island constraints are a universal property of all languages. We have also sketched how local optimality parsing can be extended to deal with segmentation, morphological analysis, and multi-speaker spoken dialogue.

In order to determine the model’s psycholinguistic plausibility, we have examined the psycholinguistic experiments that have been claimed to disprove head-driven parsing. We have shown that, although our parsing model is head-driven, its use of temporary landing sites means that it can be refined in a way that makes it compatible with the apparent counter-evidence. On this basis, we have argued that there is a family of head-driven parsers that still deserve serious consideration as a psycholinguistic model of parsing, especially because it is difficult to design predictive, non-head-driven parsers so that they always make the right predictions.

In this way, we have shown that it is possible to construct a heuristic
parsing algorithm with an almost-linear worst-case time complexity, and that this algorithm has a reasonable claim to psycholinguistic adequacy, at least with respect to the psycholinguistic evidence that we have examined.

The probabilistic language model

We have proposed a generative probabilistic language model for DG. Although the model is inspired by the generative language models for CFGs proposed by Eisner (1996), Collins (1997), and Charniak (2000), there are important differences. First of all, the DG model includes specialized sub-models for phenomena that are not directly modelled by the CFG models, such as discontinuous word order, secondary dependencies, gapping coordinations, punctuation marks, anaphora, and deep roots. Moreover, the generation of word order is no longer coupled to the generation of complements and adjuncts. Finally, the statistical estimation is mostly based on XHPM estimation with empirical priors, rather than on empirical estimation with linear interpolation or other methods of back-off.

The statistical XHPM estimation algorithm

Most linguistic entities — including lexemes, dependency roles, ontological classes, inflections, etc. — are organized by means of classification hierarchies, and linguists routinely formulate their analyses in terms of the abstract classes in these hierarchies. Nevertheless, the existing statistical techniques in computational language modelling are mostly based on empirical estimators which cannot take advantage of the abstract classes provided by the hierarchies.

For this reason, we have proposed a new family of statistical distributions, called HPM and XHPM distributions, which can be used to model conditional random variables with a mixture of hierarchically organized variables, continuous variables, empirical variables, and variables with arbitrary distributions. XHPM distributions can be viewed as a correction to a prior distribution which redistributes probability mass to regions where the empirical probability is significantly higher than stipulated by the prior distribution. The prior distribution is then used to distribute the probability mass among the individual outcomes within each region. The regions are defined in terms of rest classes of the form $c_0 - (c_1 \cup \ldots \cup c_n)$ where c_0, \ldots, c_n are classes in the hierarchies.
The estimation method proposed by Li and Abe (1998) can be viewed as a special, highly constrained instance of HPM distributions where the hierarchy is a tree rather than a general directed acyclic graph, where the prior distribution is uniform rather than arbitrary, and where all regions are given by classes in the hierarchy rather than by general rest classes.

The axiomatic model of human communication

We have proposed an axiomatic model of human communication in which human speakers are capable of comparing the relative well-formedness of any two collections of linguistic analyses. We have proven that — given a simple, linguistically plausible set of assumptions about how human speakers compare these collections of analyses — the underlying preference ordering satisfies the axioms of utility and can therefore be expressed by means of a utility function. This proof has important theoretical ramifications, because it shows that if our axiomatic model is a reasonable idealization of the behaviour of human speakers, then human grammars can be encoded by means of utility or probability functions. That is, quantitative models of human language are not only necessary from an applied point of view, they are an issue of central theoretical importance in linguistics.

Weaknesses

There are a number of weaknesses in the dissertation which external constraints have prevented me from addressing. The most serious weakness is the lack of a computational implementation which could be used to evaluate the theory with respect to its linguistic and computational adequacy; instead, I have only provided a blueprint for a computational implementation, and written the first 27,000 lines of source code in the DTAG program. Although linguistic theories should be allowed to exist for some time without an implementation and computational evaluation, I hope to eventually live up to my own ideals in this respect.

The DG theory presented in this dissertation has other shortcomings of a less serious nature. It stops short of providing a theory for anaphora, but should be extended so that it provides a linguistic analysis of anaphora, and a way of dealing with them in the lexicon, the parser, and the probabilistic language model. The probabilistic language model proposed in chapter 6 could be extended in many ways, as detailed at the end of the
chapter. DG theory would also benefit from a thorough comparison with
to other theories in linguistics, computational linguistics, and psycholinguistics,
both with respect to formal machinery, parsing and learning algo-
and linguistic analyses of particular phenomena, and empirical find-
ings about human language processing.

Finally, a book should be written at least twice, and this book suffers
from having been written only once.

The way ahead

There are many issues that have not been addressed in this dissertation, but
the syntax formalism proposed in this dissertation does at least offer partial
progress towards achieving the ultimate goals outlined at the beginning of
this chapter: (a) the DG formalism seems to provide a useful basis for the
syntactic description of human languages; (b) it seems to provide a good
framework for formulating linguistically adequate probabilistic language
models; (c) it can be coupled with a parsing algorithm with almost-linear
time complexity; and (d) the parsing model seems to be compatible with
at least some of the psycholinguistic evidence about human parsing. We
therefore believe that the syntax formalism proposed in this dissertation
may be a step in the right direction which deserves further exploration.

8.3 Doctoral requirements

The formal requirements for the Danish doctoral degree are stated below,
in my translation:

“§ 3 (2). The doctoral degree must be awarded as a recognition
that the author has a considerable degree of scientific insight
and maturity, and that the dissertation has made a significant
contribution to the state of science.” (Ministerial Order No. 750
of 14 August 1996 on Doctoral Degrees)²

²The Danish original reads: “§ 3, stk. 2. Tildelingen af doktorgraden skal være udtryk for
anerkendelse af, at forfatteren har betydelig videnskabelig indsigt og modenhed og med sin
afhandling har bragt videnskaben et væsentligt skridt videre.” (Bekendtgørelse om doktor-
grader, BEK nr 750 af 14/08/1996)
The Danish doctoral degree roughly corresponds to the German dr.habil. degree (habilitation). Within computational linguistics, the only Danish doctoral dissertation that I am aware of is Bick (2000).
Part VI

Appendices
Appendix A

DG language model

A.1 Language model

Model dg

Define DG language model

model(dg,
 pri1a, pri2a, pri2b, pri2c, pri2d, pri3a, pri4a,
 sec1a, sec1b, sec2a, sec2b, sec3a, sec3b, sec4a, sec4b);

usemodel(dg);

A.2 Submodels

Submodel pri1a

pri1a($this): primary expansion 1a of node $this where landing
site and relative word order are identified

Calculate normed probability
complex(prila, [$this],
 # Find landing site for node and landing frame with
 # previously generated landed nodes
 var($lsite, out(landing, $this)),
 var($lframe, list(sort($n, val(linorder, $n),
 ($lsite | in(landing, $lsite))
 + where($n, lt(val(genorder, $n),
 val(genorder, $this)))))),
 var($pos, node2pos($this, $lframe)),

355
Calculate prob. of current landing site and word order
prob(pri1a_un, $this, $lsite, $lframe, $pos)

Normalize with summed probabilities for all other landing
sites and word orders
/ sum($lsite, trans($t, out(deep, $t), $this),
 # Find landing frame for this landing site
 var($lframe, list(sort($n, val(linorder, $n),
 ($lsite | in(landing, $lsite))
 + where($n, lt(val(genorder, $n),
 val(genorder, $this))))),
 # Sum over all possible word orders at landing site
 sum($pos, sequence(0, abs($lframe)),
 prob(pri1a_un, $this, $lsite, $lframe, $pos))))
)
-> where(out(landing, $this));

Submodel pri1a-un

pri1a_un($this, $lsite, $lframe, $pos): calculate unnormed
landing site and word order probability (primary1a) associated
with node $this
complex(pri1a_un, [$this, $lsite, $lframe, $pos],
Find all island nodes
var($islanddeps,
 list(trans($t, out(deep, $t) - $lsite, $this))),
Find product of all extraction probabilities
product($islanddep, $islanddeps,
 var($island, out(deep, $islanddep)),
 min(1, prob(ldepext, $islanddep, $island, $this)
 / prob(ldep, $islanddep)))
Multiply with word order weights
* product($ipos, sequence(0, abs($lframe)),
 # Find nearest locally landed complements
 var(prevc, last(member($lframe)
 - after(pos2node($ipos, $lframe)) - $lsite),
 var(nextc, first(member($lframe)
 - before(pos2node($ipos + 1, $lframe)) - $lsite),
 # Find nearest landed nodes between locally landed comps.
 var(preva, pos2node($ipos, $lframe) - ($lsite | $prevc)),

A.2. Submodels

Submodel pri2a

pri2a($this): primary expansion 2a of node $this where
complement frame is selected

complex(pri2a, [$this],
 prob(cframe, $this)
) -> where($this - filler);

Submodel pri2b

pri2b($this): primary expansion 2b of node $this where fillers
are generated. For each potential filler source, we determine
the probability of generating a filler. The potential filler
sources for a node are hardcoded into the model, and are computed by
first finding a "neighbour" to the filler source (which is either
the filler licensor, its governor, or the governor’s governor if the
filler licensor heads a relative clause attached to a subject), and
then finding a source as any dependent or landed node at the
neighbour, any parent of the neighbour, or any node that is
extracted through the neighbour.

complex(pri2b, [$this],
 # Find potential neighbours of filler source, and potential
 # filler sources
 var($neighbours, list(
 $this
 | out(deep, $this)
 | out(subj, out(rel, $this))
)),
 var($sources, list(
 in(deep|landing, member($neighbours))
 | out(deep, member($neighbours))
 | extract(member($neighbours))
)),

 # Sort filler sources into left and right side of licensor
in decreasing distance to licensor, and unordered sources
in generation order
var($lsources, sort($n, dist($n, $this),
 member($sources) + before($this))),
var($rsources, sort($n, -dist($n, $this),
 member($sources) + after($this))),
var($usources, sort($n, val($n, genorder),
 member($sources) - out(surf, $n))),

Find all possible filler edge type outcomes observed in the
"ftype" distribution for node "this" and attribute "ftype"
var($ftypes, list(outcome(ftype, this, ftype))),

For each filler edge type and left filler source, decide whether
filler licensor generates filler conditioned on the
decisions made for the previous filler source
product($src, member($lsources),
 var($prev, prev(member($lsources), $src)),
 product($ftype, member($ftypes),
 prob(fgen, $this, $src, $ftype, $prev)
),
)

For each filler edge type and right filler source, decide
whether filler licensor generates filler conditioned on the
decisions made for the previous filler source
* product($src, member($rsources),
 var($prev, next(member($rsources), $src)),
 product($ftype, member($ftypes),
 prob(fgen, $this, $src, $ftype, $prev)
),
)

For each filler edge type and unordered filler source, decide
whether filler licensor generates filler conditioned on the
decisions made for the previous filler source
* product($src, member($usources),
 var($prev, next(member($usources), $src)),
 product($ftype, member($ftypes),
 prob(fgen, $this, $src, $ftype, $prev)
),
)

-> where($this - filler);

Submodel pri2c

pri2c($this): primary expansion 2c of node $this where
fillers are consumed or passed on to a complement. For each
potential filler, we determine the probability of consuming the
filler as a complement or an adjunct. Fillers are ordered in
generation order.

complex(pri2c, [$this],
 # Find fillers passing through node $this sorted in
 # generation order
 var($fillers, sort($n, val(genorder, $n),
 list(filler + (in(deep, $this) | extract($this)))))

 # Find product of probabilities for each filler
 product($filler, member($fillers),
 # Find complement roles, empty complement roles, and
 # adjunct roles
 var($croles, sort(etype(in(comp, $this))))),
 var($emptycroles, list(member($croles)
 + where($crole, lt(val(genorder, in($crole, $this)),
 val(genorder, $filler))))),
 var($aroles, list(outcome(dtype, this, dtype) + adjunct)),
 var($dtype, etype(out(deep, $filler)));

 # Find probability of selected method of disposal
 prob(fdispose, $filler, $this, $dtype,
 abs($filler + in(deep, $this)), 1)
 / (# Consume as complement...
 sum($crole, member($emptycroles),
 prob(fdispose, $filler, $this, $crole, 1, 1))
 # or pass on to complement...
 + sum($crole, member($croles),
 prob(fdispose, $filler, $this, $crole, 0, 1))
 # or for each adjunct role
 + sum($arole, member($aroles),
 # consume as adjunct...
 prob(fdispose, $filler, $this, $arole, 0, 1)
 # or pass on to adjunct
 + prob(fdispose, $filler, $this, $arole, 1, 1)){
 -> where($this - filler);
Submodel pri2d

pri2d($this): primary expansion 2d of node $this where
complements are generated and expanded.

complex(pri2d, [$this],
 # Find complements not satisfied by a filler
 var($freecomps, sort($n, val(genorder, $n),
 list(in(deep, $this) - filler))),

 # Find product of probabilities for generating each complement
 product($comp, member($freecomps),
 # Find probability of complement lexeme
 prob(comp, $comp, $this, etype(out(deep, $comp)))))
) -> where($this - filler);

Submodel pri3a

pri3a($this): primary expansion 3a of node $this where
non-punctuation adjuncts are generated and expanded.

complex(pri3a, [$this],
 # Find probabilities of generated non-filler adjuncts
 product($adj, in(adj-pnct, $this) - filler,
 # First choose an adjunct role: if the governor has passed
 # a filler to the adjunct, then the adjunct role has already
 # been generated
 ifelse(filler + extract(out(deep, $adj)),
 1,
 prob(arole, $this, etype(out(deep, $adj)))))

 # Choose adjunct lexeme given governor lexeme and adjunct role
 * prob(adj, $adj, $this, etype(out(deep, $adj))))

)

 # Find stopping probability
 * prob(arole, $this, STOP)
) -> where($this - filler);

Submodel pri4a

pri4a($this): primary expansion 4a of node $this where
gapping conjuncts are generated and expanded.
A.2. Submodels

complex(pri4a, [$this],
 # Find gapping conjuncts
 var($gaps, list(in(conj, $this) + where($n, out(gap, $n)))),
 # Generate number of gapping conjuncts
 prob(gapnum, $this, abs($gaps))
 # Generate gapping conjuncts
 * product($gap, member($gaps),
 # Choose number of gapping dependents in each conjunct
 var($gapdeps, list(in(gapd, $gap))),
 prob(gapdepnum, $gap, $this, abs($gapdeps))
 # Generate gapping dependents
 * product($gapdep, member($gapdeps),
 # Generate replacement path...
 var($repl, out(repl, $gapdep)),
 prob(gappath, $gapdep, $this, path($this, $repl))
 # and lexeme for gapping dependent
 ifelse(out(comp, $repl),
 prob(comp, $gapdep, out(comp, $repl),
 etype(out(comp, $repl))),
 prob(adj, $gapdep, out(adj, $repl),
 etype(out(adj, $repl))))
)
)
-> where($this - (filler - gap));

Submodel sec1a

sec1a($this): generate deep roots if node is at the right
periphery

complex(sec1a, [$this],
 # Generate number of deep roots
 var($droots, in(surface, $this) + where($n, -out(deep, $n))),
 prob(drootnum, $this, abs($droots))
 # Generate deep roots
 * product($droot, member($droots),
 # Generate deep root
 prob(droot, $this, $droot, etype(out(surface, $droot)))
)
Appendix A. DG language model

Submodel sec3a

complex(sec3a, [$this],
 # Find landing frame for $this, with and without punctuation
 var($lframe, list(sort($n, val(linorder, $n),
 $lsite | in(landing, $lsite)))),
 var($lframe_np, list(member($lframe) - punctuation)),

 # Process punctuation fields in landing frame (ie, # each position between non-punctuation nodes in lframe)
 product($pos, sequence(0, abs($lframe_np)),
 # Find previous and next non-punctuation node
 var($prevnp, pos2node($pos, $lframe_np)),
 var($nextnp, pos2node($pos + 1, $lframe_np)),

 # Find oldest non-punctuation node to left and right
 var($oldestl, last(sort($n, val(genorder, $n),
 member($lframe_np) - $nextnp - after($nextnp)))),
 var($oldestr, last(sort($n, val(genorder, $n),
 member($lframe_np) - $prevnp - before($prevnp)))).

 # Find left and right punctuation field at # outside periphery
 var($outl, ifelse($pos > 0, '',
 list(leftp($this, -any, in(pnct, any))))),
 var($outr, ifelse($pos < abs($lframe_np), '',
 list(rightp($this, -any, in(pnct, any))
 + where($n, out(pnct, $n) + dominate($this))))),

 # Find punctuation field at given position
 var($pnctfield, list(member($lframe) + in(pnct, any)
 + after($prevnp) + before($nextnp))),

 # Process each punctuation mark in punctuation field
 product($pnct, member($pnctfield),
 # Find last open begin marker
 var($open, last(member($lframe) + in(pnct, $this)
 + before($pnct) + beginmarker
 - where($n, out(match, $n) + before($pnct)
 + in(pnct, $this))))},

)}

where($this + dominate(rightp(TOP, -before(any))));
A.3 Distributions

Distribution adj

adj($dep, $gov, $dtype): choice of adjunct $dep given
governor $gov and adjunct role $dtype, modelled by an
XHPM distribution

distribution(adj, [$dep, $gov, $dtype], xhpm())

Training material computed from $dep
-> train(
 var($gov, out(deep, $dep)),
 var($dtype, etype(out(deep, $dep))))
-> trainwhere(out(adj, $dep))

Augmentation
-> augmentation(
 id(dep, $dep)
 + id(gov, $gov)
 + attr(gov, lex, val(lexeme, $gov))
 + attr(dep, lex, val(lexeme, $dep))
 + attr(dep, dtype, $dtype))

Specification of the probability model:
(dep.lex|gov.lex, dep.dtype)
-> e(dep, dtype)
-> c(any, any)
-> given(gov, lex)
-> given(dep, dtype)
-> hierarchy(any, lex, hierarchy_lexeme)
-> hierarchy(any, dtype, hierarchy_edge)

Specification of prior distribution
-> cnew_prior(
 prob(lexeme, rename(dep, this, subaug(dep, lex, aug()))))
-> cgiven_prior(
 prob(lexeme, rename(gov, this, subaug(gov, lex, aug())))
 * prob(dtype, rename(dep, this, subaug(dep, dtype, aug()))))
);

Distribution arole

arole($this, $dtype): choice of adjunct role $dtype given
governor $this, modelled by an XHPM distribution

distribution(arole, [$this, $dtype],
 xhpm()
 # Training material computed from $this
 -> train(
 nvar($dtype, STOP | etype(in(adj, $this))))
 -> trainwhere(in(adj, $this))

 # Augmentation
 -> augmentation(
 id(this, $this)
 + attr(this, lex, val(lexeme, $this))
 + attr(this, dtype, $dtype))

 # Specification of the probability model: (this.dtype|this.lex)
 -> c(any, any)
 -> given(this, lex)
 -> hierarchy(any, lex, hierarchy_lexeme)
 -> hierarchy(any, dtype, hierarchy_edge)

 # Specification of prior distribution
 -> cnew_prior(
 prob(dtype, subaug(this, dtype, aug())))
 -> cgiven_prior(
 prob(lexeme, subaug(this, lex, aug())))
)
-> where($this - filler);
Distribution cframe

cframe($this): ultimate complement frame for node $this
modelled by an empirical distribution

distribution(cframe, [$this],
 xhpm()

 # Training material
 -> trainwhere($this - filler)

 # Augmentation
 -> augmentation(
 id(this, $this)
 + attr(this, lex, val(lexeme, $this))
 + attr(this, dtype, etype(out(deep, $this)))
 + attr(this, stype, etype(out(landing, $this)))
 + attr(this, cframe,
 join(’ ’, sort(etype(in(comp, $this))))))

 # Variables and hierarchies
 -> c(this, lex|dtype|stype)
 -> x(this, cframe)
 -> given(this, lex|dtype|stype)
 -> hierarchy(lex, hierarchy_lexeme)
 -> hierarchy(dtype|stype, hierarchy_edge)

 # Prior distributions and estimation methods
 -> cgiven_prior(prob(node, subaug(this, lex|dtype|stype, aug())))
 -> xnew_est(empirical)
)

Distribution comp

comp($dep, $gov, $dtype): choice of complement $dep given
governor $gov and complement role $dtype, modelled by an
XHPM distribution

distribution(comp, [$dep, $gov, $dtype],
 xhpm()

 # Training material computed from $dep
 -> train(
 var($gov, out(deep, $dep)),
 var($dtype, etype(out(deep, $dep))))
 -> trainwhere(out(comp, $dep))
Augmentation

-> augmentation(
 id(dep, $dep)
 + id(gov, $gov)
 + attr(gov, lex, val(lexeme, $gov))
 + attr(dep, lex, val(lexeme, $dep))
 + attr(dep, dtype, $dtype))

Specification of the probability model:
(dep.lex|gov.lex, dep.dtype)
-> e(dep, dtype)
-> c(any, any)
-> given(gov, lex)
-> given(dep, dtype)
-> hierarchy(any, lex, hierarchy_lexeme)
-> hierarchy(any, dtype, hierarchy_edge)

Specification of prior distribution
-> cnew_prior(
 prob(lexeme, rename(dep, this, subaug(dep, lex, aug()))))
-> cgiven_prior(
 prob(lexeme, rename(gov, this, subaug(gov, lex, aug())))
 * prob(dtype, rename(dep, this, subaug(dep, dtype, aug()))))
);

Distribution droot

droot($this, $lsite, $stype): choice of deep root $this given
landing site $lsite and landing edge type $stype, modelled by
an XHPM distribution

distribution(droot, [$this, $lsite, $stype],
 xhpm())

Training material computed from $this
-> train(
 var($lsite, out(surface, $this)),
 var($stype, etype(out(surface, $this))))
-> trainwhere(out(surface, $this) + where($n, -out(deep, $this)))

Augmentation
-> augmentation(
 id(this, $this)
 + id(lsite, $lsite)
 + attr(this, lex, val(lexeme, $this))
 + attr(lsite, lex, val(lexeme, $lsite))
 + attr(this, stype, etype(out(surface, $this))))
A.3. Distributions

Specification of the probability model:
-> c(any, any)
-> given(lsite, lex)
-> hierarchy(any, lex, hierarchy_lexeme)
-> hierarchy(any, stype, hierarchy_edge)

Specification of prior distribution
-> cnew_prior(
 prob(lexeme, subaug(this, lex, aug()))
 * prob(etype, rename(this, stype, etype,
 subaug(this, stype, aug()))))
-> cgiven_prior(
 prob(lexeme, rename(lsite, this,
 subaug(lsite, lex, aug()))))
);

Distribution drootnum

drootnum($this, $nroots): choice of number of deep roots
given node $this at the right periphery, modelled by an
XHPM distribution

distribution(drootnum, [$this, $nroots],
 xhpm()
 # Training material computed from $this
 -> train(var($nroots,
 abs(in(surface, $this) + where($n, -out(deep, $n))))
 -> trainwhere($this + dominate(rightp(TOP, -before(any), -any)))

 # Augmentation
 -> augmentation(
 id(this, $this)
 + attr(this, lex, val(lexeme, $this))
 + attr(this, nroots, $nroots))

 # Specification of the probability model: (nroots|lex)
 -> x(this, nroots)
 -> c(this, lex)
 -> given(this, lex)
 -> hierarchy(any, lex, hierarchy_lexeme)

 # Specification of prior distribution
 -> cgiven_prior(prob(lexeme, subaug(this, lex, aug())))
 -> xnew_est(empirical)
);
Distribution dtype

dtype($this): dependent role of node $this modelled by an
empirical distribution without smoothing

distribution(dtype, [$this],
 empirical()

 # Augmentation
 -> augmentation(
 id(this, $this)
 + attr(this, dtype, etype(out(deep, $this))))

 # Hierarchy for deep edges
 -> hierarchy(any, dtype, hierarchy_edge)
);

Distribution etype

etype($this, $etype): edge type $etype for an edge at node
$this modelled by an empirical distribution

distribution(etype, [$this, $etype],
 empirical()

 # Training material computed from $this
 -> train(nvar($etype, etype(out(any, $this))))

 # Augmentation
 -> augmentation(
 id(this, $this)
 + attr(this, etype, $etype))

 # Hierarchy
 -> hierarchy(any, lex, hierarchy_edge)
);

Distribution fdispose

fdispose($filler, $disposer, $dtype, $method, $disposed):
models the decision $decision (1 = dispose, 0 = do not dispose)
made by a node $disposer when asked to dispose of a filler
$filler to a dependent role $dtype using the consumption
method $consume (1 = consume, 0 = pass on), modelled by an
XHFM distribution.

distribution(fdispose, [$filler, $disposer, $dtype, $consume],
xhpm()

Compute training material from $filler
-> train(
 # Find all disposers
 nvar($disposer, dominate($filler)
 - dominate(out(fill, $filler)))

 # Find dtype for consumption/passing-on
 nvar($dtype, etype(in(deep, $disposer)
 + where($D, $D + (dominate($filler) | $filler))))),

 # Determine whether filler was consumed or passed-on
 var($consume, abs($disposer + out(deep, $filler))),
)
-> trainwhere($filler + filler)

Augmentation
-> augmentation(
 id(filler, $filler) + id(disposer, $disposer)
 + attr(filler, dtype, $dtype)
 + attr(filler, ftype, etype(out(fill, $filler)))
 + attr(filler, consume, $consume)
 + attr(filler, lex, val(lexeme, $filler))
 + attr(filler, liclex, val(lexeme, out(fill, $filler)))
 + attr(filler, path, path(out(fill, $filler), $filler))
 + attr(disposer, lex, val(lexeme, $disposer)))

Variables and hierarchies
-> x(filler, consume)
-> c(any, any)
-> new(filler, consume)
-> new(filler, dtype)
-> given(any, any)
-> hierarchy(any, lex|liclex, hierarchy_lexeme)
-> hierarchy(any, dtype|ftype, hierarchy_edge)

Prior distributions and estimators
-> xnew_est(empirical)
-> cnew_prior(prob(dtype, rename(filler, this, subaug(filler, dtype, aug()))))
-> cgiven_prior(
 prob(lexeme, rename(filler, this, subaug(filler, lex, aug())))
 * prob(lexeme, rename(filler, this, rename(filler, liclex, lex, subaug(filler, liclex, aug()))))
)
* prob(lexeme, rename(disposer, this, subaug(disposer, lex, aug())))
* prob(ftype, rename(filler, this, subaug(filler, ftype, aug())))
* prob(fpath, rename(filler, this, subaug(filler, path, aug())))

);

Distribution fgen

fgen($this, $src, $ftype, $prev): choosing whether the filler licensor $this should generate a filler for filler source $src with filler type $ftype, given the previous filler source $prev and its generated fillers, modelled by an XHPM distribution.

distribution(fgen, [$this, $src, $ftype, $prev], xhpm()

 # Training material constructed from $this for all non-filler nodes
 -> train(
 # Find potential neighbours of filler source, and potential filler sources
 var($neighbours, list($this
 | out(deep, $this)
 | out(subj, out(rel, $this))),
 var($sources, list(
 in(deep|landing, member($neighbours))
 | out(deep, member($neighbours))
 | extract(member($neighbours))),
 # Sort filler sources into left and right side of licensor
 var($lsources, sort($n, dist($n, $this), member($sources) + before($this))),
 var($rsources, sort($n, -dist($n, $this), member($sources) + after($this))),
 var($usources, sort($n, val($n, genorder), member($sources) - out(surf, $n))),
 # Find all possible filler edge type outcomes observed in the "ftype" distribution for node "this" and attribute "ftype"
 var($ftypes, list(outcome(ftype, this, ftype))))

 # Non-deterministically run through all possible
A.3. Distributions

combinations of filler sources and filler types
((nvar($src, member($lsources))
 + var($prev, prev(member($lsources), $src)))
 | (nvar($src, member($rsources))
 + var($prev, next(member($rsources), $src)))
 | (nvar($src, member($usources))
 + var($prev, prev(member($usources), $src))
 + nvar($ftype, member($ftypes)))
 -> trainwhere($this - filler)

Augmentation
-> augmentation(
 id(this, $this) + id(src, $src) + id(prev, $prev)

 # this: (a) lexeme; (b) deep role; (c) complement frame;
 + attr(this, lex, val(lexeme, $this))
 + attr(this, dtype, etype(out(deep, $this)))
 + attr(this, stype, etype(landing(deep, $this)))
 + attr(this, cframe,
 join(’,’, sort(etype(in(comp, $this)))))

 # src: (a) ftype; (b) deep role; (c) landing field;
 # (d) local landing; (e) upwards part of path from $this
 # to $src; (f) downwards part of path from $this to $src;
 # (g) position relative to $this; (h) whether filler is
 # created or not
 + attr(src, ftype, $ftype)
 + attr(src, field,
 abs($src + before(out(landing, $src))))
 + attr(src, local,
 abs(out(landing, $src) + out(deep, $src)))
 + attr(src, uppath, uppath($this, $src))
 + attr(src, downpath, downpath($this, $src))
 + attr(src, pos, abs($src + before($this)))
 + attr(src, created,
 abs($src + out(source, in($ftype, $this))))

 # prev: (a) used as filler source for filler with type
 # $ftype by $this; (b) used as filler source for filler
 # with type $ftype by other filler licensor; (c) whether
 # uppath for $prev is the same as for $src
 + attr(prev, this_created,
 abs($prev + out(source, in($ftype, $this))))
 + attr(prev, other_created,
 abs($prev + out(source, in($ftype, any - $this))))
 + attr(prev, sameuppath,
 uppath($this, $prev) == uppath($this, $src))
Appendix A. DG language model

Variables
-> e(src, ftype)
-> x(src, created)
-> c(any, any)
-> new(src, created)
-> given(any, any)

Hierarchies
-> hierarchy(any, lex, hierarchy_lexeme)
-> hierarchy(any, dtype|stype, hierarchy_edge)

Prior distributions and estimators
-> xnew_est(empirical)
-> cgiven_prior(this, cframe, prob(cframe, subaug(this, cframe|lex|dtype|stype, aug())))
-> cgiven_prior(this, lex|dtype|stype, prob(node, subaug(this, lex|dtype|stype, aug())))
-> cgiven_prior(any, any, empirical)

); Distribution fpath

fpath($this): observed path from filler to filler licensor
modelled by an empirical distribution

distribution(fpath, [$this],
 empirical()

 # Augmentation
 -> augmentation(
 id(this, $this)
 + attr(this, path,
 path(out(fill, $this), $this))
)
 -> where($this + filler);

Distribution ftype

ftype($this): observed filler type modelled by an empirical
distribution

distribution(ftype, [$this],
 empirical()
A.3. Distributions

Training material
-> trainwhere(out(fill, $this))

Augmentation
-> augmentation(
 id(this, $this)
 + attr(this, ftype,
 etype(out(fill, $this))))
);

Distribution gapdepnum

gapdepnum($gap, $gov, $ngapdeps): choice of number of gapping
dependents in a gapping conjunct $gap with governor $gov,
modelled by an XHPM distribution

distribution(gapdepnum, [$gap, $gov, $ngapdeps],
 xhpm()
 # Training material computed from $this
 -> train(
 var($gov, out(deep, $gap)),
 var($ngapdeps, abs(in(gapd, $gap))))
 -> trainwhere($this + gap)

Augmentation
-> augmentation(
 id(this, $this)
 + attr(this, lex, val(lexeme, $gov))
 + attr(this, ngapdeps, $ngapdeps))

Specification of the probability model: (ngaps|lex)
-> x(this, ngapdeps)
-> c(this, lex)
-> given(this, lex)
-> hierarchy(any, lex, hierarchy_lexeme)

Specification of prior distribution
-> cgiven_prior(prob(lexeme, subaug(this, lex, aug())))
-> xnew_est(empirical)
);

Distribution gapnum

gapnum($this, $ngaps): choice of number of gapping conjuncts
given gap governor $this, modelled by an XHPM distribution

distribution(gapnum, [$this, $ngaps],
 xhpm()

 # Training material computed from $this
-> train(
 var($ngaps, abs(in(conj, $this) + where($n, out(gap, $n)))))
-> trainwhere($this - (filler - gap))

 # Augmentation
-> augmentation(
 id(this, $this)
 + attr(this, lex, val(lexeme, $this))
 + attr(this, ngaps, $ngaps))

 # Specification of the probability model: (ngaps|lex)
-> x(this, ngaps)
-> c(this, lex)
-> given(this, lex)
-> hierarchy(any, lex, hierarchy_lexeme)

 # Specification of prior distribution
-> cgiven_prior(prob(lexeme, subaug(this, lex, aug())))
-> xnew_est(empirical)
);

Distribution gappath

gappath($gapdep, $first, $path): choice of replacement path in
gapping coordination with gapping dependent $gapdep and first
conjunct $first, modelled by an XHPM distribution

distribution(gappath, [$gapdep, $first, $path],
 xhpm())

 # Training material computed from $gapdep
-> train(
 var($first, out(deep, out(gapd, $gapdep))),
 var($path, path($first, out(repl, $gapdep))))
-> trainwhere(out(gapd, $gapdep))

 # Augmentation
-> augmentation(
 id(this, $gapdep)
 + attr(this, lex, val(lexeme, $first))
 + attr(this, path, $path))
A.3. Distributions

Specification of the probability model: (ngaps|lex)
-> x(this, path)
-> c(this, lex)
-> given(this, lex)
-> hierarchy(any, lex, hierarchy_lexeme)

Specification of prior distribution
-> cgiven_prior(prob(lexeme, subaug(gov, lex, aug())))
-> xnew_est(empirical)

Distribution landa

landa($this, $lsite, $landa): a local landed complement $landc
next to node $this at landing site $lsite modelled by an XHPM
distribution

distribution(landa, [$this, $lsite, $landc], xhpm())

Training material constructed from $this for all nodes
that have a landing site
-> train(
 # Find landing site for node and landing frame with
 # previously generated landed nodes
 var($lsite, out(landing, $this)),
 var($lframe, list(sort($n, val(linorder, $n),
 ($lsite | in(landing, $lsite))
 + where($n, lt(val(genorder, $n),
 val(genorder, $this)))))),
 var($pos, node2pos($this, $lframe)),

 # Find nearest locally landed complements
 var($prevc, last(member($lframe)
 - after(pos2node($pos, $lframe)) - $lsite)),
 var($nextc, first(member($lframe)
 - before(pos2node($pos + 1, $lframe))) - $lsite)),

 # Find nearest landed nodes between locally landed comps.
 var($preva, pos2node($pos, $lframe) - ($lsite | $prevc)),
 var($nexta, pos2node($pos + 1, $lframe) - ($lsite | $nextc))

 # Find landa
 nvar($landa, $preva|$nexta))
Appendix A. DG language model

```plaintext
-> trainwhere(out(landing, $this))

# Augmentation
-> augmentation(
   id(lsite, $lsite) + id(landa, $landa)
   + concat(setof($n, lsite|landa,
      attr($n, lex, val(lexeme, $n))
      + attr($n, stype, etype(out(landing, $n))))
   + attr($n, dtype, etype(out(deep, $n)))
   + attr($n, local,
      abs(out(landing, $n) + out(deep, $n)))))

# Variables and hierarchies
-> c(any, any)
-> given(lsite, any)
-> hierarchy(any, lex, hierarchy_lexeme)
-> hierarchy(any, dtype, hierarchy_edge)
-> hierarchy(any, stype, hierarchy_edge)

# Prior distributions
-> cnew_prior(prob(lnode,
   rename(landc, this, subaug(landc, any, aug()))))
-> cgiven_prior(prob(lnode,
   rename(lsite, this, subaug(lsite, any, aug()))))
)
```

Distribution landc

```plaintext
# landc($landc, $lsite): a local landed complement $landc at # landing site $lsite modelled by an XHPM distribution
distribution(landc, [$this, $lsite, $landc],
   xhpm()
   # Training material constructed from $this for all nodes # that have a landing site
   -> train(
      # Find landing site for node and landing frame with # previously generated landed nodes
      var($lsite, out(landing, $this)),
      var($lframe, list(sort($n, val(linorder, $n),
         ($lsite | in(landing, $lsite))
      + where($n, lt(val(genorder, $n),
         val(genorder, $this)))))
      ,
      var($pos, node2pos($this, $lframe)),
      # Find nearest locally landed complements
   )
```

Distribution landc

landc($landc, $lsite): a local landed complement $landc at # landing site $lsite modelled by an XHPM distribution
distribution(landc, [$this, $lsite, $landc],
 xhpm()
 # Training material constructed from $this for all nodes # that have a landing site
 -> train(
 # Find landing site for node and landing frame with # previously generated landed nodes
 var($lsite, out(landing, $this)),
 var($lframe, list(sort($n, val(linorder, $n),
 ($lsite | in(landing, $lsite))
 + where($n, lt(val(genorder, $n),
 val(genorder, $this)))))
 ,
 var($pos, node2pos($this, $lframe)),
 # Find nearest locally landed complements
)
```
A.3. Distributions

```
var($prevc, last(member($lframe)
 - after(pos2node($pos, $lframe))) - $lsite),
var($nextc, first(member($lframe)
 - before(pos2node($pos + 1, $lframe))) - $lsite),

Find landc
nvar($landc, $prevc|$nextc))
-> trainwhere(out(landing, $this))

Augmentation
-> augmentation(
 id($lsite, $lsite) + id($landc, $landc)
 + concat(setof($n, $lsite|$landc,
 attr($n, lex, val(lexeme, $n))
 + attr($n, stype, etype(out(landing, $n)))
 + attr($n, dtype, etype(out(deep, $n)))
 + attr($n, local,
 abs(out(landing, $n) + out(deep, $n)))))

Variables and hierarchies
-> c(any, any)
-> given($lsite, any)
-> hierarchy(any, lex, hierarchy_lexeme)
-> hierarchy(any, dtype, hierarchy_edge)
-> hierarchy(any, stype, hierarchy_edge)

Prior distributions
-> cnw_prior(prob(lnode,
 rename($landc, this, subaug($landc, any, aug()))))
-> cgiven_prior(prob(lnode,
 rename($lsite, this, subaug($lsite, any, aug()))))
```
id(dep, $dep)
  + id(gov, $gov)
  + concat(setof($n, dep|gov,
    attr($n, lex, val(lexeme, $n))
    + attr($n, dtype, etype(out(deep, $n))))
    + attr($n, stype, etype(out(landing, $n)))))))

# Specification of the probability model
-> c(any, any)
-> hierarchy(any, lex, hierarchy_lexeme)
-> hierarchy(any, dtype, hierarchy_edge)
-> hierarchy(any, stype, hierarchy_edge)

# Specification of prior distribution
-> cnew_prior(
    prob(node, rename(dep, this, subaug(dep, any, aug())))
    * prob(node, rename(gov, this, subaug(gov, any, aug())))))
);

Distribution ldepext

# ldepext($dep, $gov, $ext): a dependency between a dependent $dep
# and a governor $gov extracted through a node $ext modelled by
# an XHPM distribution

distribution(ldepext, [$dep, $gov, $ext],
  xhpm())

    # Training material computed from $dep
  -> train(
      var($gov, out(deep, $dep)),
      nvar($ext, extract(out(deep, $dep))))
  -> trainwhere(extract(out(deep, $dep))))

  # Augmentation
  -> augmentation(
    id(dep, $dep)
    + id(gov, $gov)
    + id(ext, $ext)
    + concat(setof($n, dep|gov|ext,
      attr($n, lex, val(lexeme, $n))
      + attr($n, dtype, etype(out(deep, $n))))
      + attr($n, stype, etype(out(landing, $n)))))))

  # Specification of the probability model:
  # (gov.{lex,dtype,stype}, dep.{lex,dtype,stype}
  #   |ext.{lex,dtype,stype})
-> c(any, any)
-> given(ext, any)
-> hierarchy(any, lex, hierarchy_lexeme)
-> hierarchy(any, dtype, hierarchy_edge)
-> hierarchy(any, stype, hierarchy_edge)

# Specification of prior distribution
-> cnw_prior(
    prob(ldep, subaug(dep|gov, any, aug()))
-> cgiven_prior(
    prob(node, rename(ext, this, subaug(ext, any, aug()))))
);

Distribution lexeme

# lexeme($this): lexeme associated with a node $this modelled
# by an empirical distribution

distribution(lexeme, [$this],
            empirical()

    # Augmentation
    -> augmentation(
        id(this, $this) + attr(this, lex, val(lexeme, $this)))

    # Hierarchies
    -> hierarchy(any, lex, hierarchy_lexeme)

    # Unknown lexemes (lexemes with frequency <= 5)
    -> known_mincount(5)
    -> unknown_marker('UNK')
);

Distribution lnode

# lnode($this): a node $this with lexeme, deep role, surface
# role, and locality flag modelled by an XHFM distribution

distribution(lnode, [$this],
            xhpm()

    # Augmentation
    -> augmentation(
        id(this, $this)
        + attr(this, lex, val(lexeme, $this))
        + attr(this, dtype, etype(out(deep, $this)))

+ attr(this, stype, etype(out(landing, $this)))
+ attr(this, local,
    abs(out(landing, $this) + out(deep, $this))))

# Variables and hierarchies
-> c(this, any)
-> hierarchy(any, lex, hierarchy_lexeme)
-> hierarchy(any, dtype, hierarchy_edge)
-> hierarchy(any, stype, hierarchy_edge)

# Prior distribution
-> cnew_prior(
   prob(node, subaug(any, lex|dtype|stype, aug()))
* prob(local, subaug(any, local, aug())))
);

Distribution local

# local($this): local landing of node $this modelled by an
# empirical distribution
distribution(local, [$this],
   empirical()  

# Augmentation
-> augmentation(
   id(this, $this)
   + attr($this, local,
      abs(out(landing, $this) + out(deep, $this))))
);

Distribution node

# node($this): a node $this with lexeme, deep role, and surface
# role modelled by an XHFM distribution
distribution(node, [$this],
   xhpm()  

# Augmentation
-> augmentation(
   id(this, $this)
   + attr(this, lex, val(lexeme, $this))
   + attr(this, dtype, etype(out(deep, $this)))
   + attr(this, stype, etype(out(landing, $this))))
A.3. Distributions

# Variables and hierarchies
-> c(this, lex|dtype|stype)
-> hierarchy(any, lex, hierarchy_lexeme)
-> hierarchy(any, dtype, hierarchy_edge)
-> hierarchy(any, stype, hierarchy_edge)

# Prior distribution
-> cnew_prior(
    prob(lexeme, subaug(any, lex, aug()))
    * prob(dtype, subaug(any, dtype, aug()))
    * prob(stype, subaug(any, stype, aug()))
);
Appendix A. DG language model

# $prevp, where $oldestl is the oldest node in the landing field to the left, and $oldestr is the oldest node in the landing field to the right, $open is the last open begin marker at $this, and $outl and $outr are the punctuation marks from the outside periphery of $this that lie between $prevnp and $nextnp (ie, they are empty unless $prevnp or $nextnp mark the start or the end of the landing field).

distribution(pnct, [$this, $pnct, $prevnp, $nextnp, $prevp, $oldestl, $oldestr, $open, $outl, $outr], xhpm())

# Training material constructed from $this

-> train(
  # Find landing frame for $this, with and without punctuation
  var($lframe, list(sort($n, val(linorder, $n), $lsite | in(landing, $lsite)))),
  var($lframe_np, list(member($lframe) - punctuation)),

  # Process punctuation fields in landing frame (ie, each position between non-punctuation nodes in lframe)
  nvar($pos, sequence(0, abs($lframe_np))):

  # Find previous and next non-punctuation node
  var($prevnp, pos2node($pos, $lframe_np)),
  var($nextnp, pos2node($pos + 1, $lframe_np)),

  # Find oldest non-punctuation node to left and right
  var($oldestl, last(sort($n, val(genorder, $n), member($lframe_np) - $nextnp - after($nextnp)))),
  var($oldestr, last(sort($n, val(genorder, $n), member($lframe_np) - $prevnp - before($prevnp)))),

  # Find left and right punctuation field at outside periphery
  var($outl, ifelse($pos > 0, '', list(leftp($this, -any, in(pnct, any))))),
  var($outr, ifelse($pos < abs($lframe_np), '', list(rightp($this, -any, in(pnct, any)) + where($n, out(pnct, $n) + dominate($this))))),

  # Find punctuation field
  var($pnctfield, list(member($lframe) + in(pnct, any) + after($prevnp) + before($nextnp))),

  # Process each punctuation mark in punctuation field
  nvar($pnct, member($pnctfield) | STOP),
)
# Find last open begin marker
var($open, last(member($lframe) + in(pnct, $this) + beginmarker - ($pnct | after($pnct) | where($n, out(match, $n) + in(pnct, $this) - ($pnct | after($pnct)))))),

# Find directly preceding punctuation mark
var($prevp, last(member($lframe) + in(pnct, any) - before($prevnp) - after($nextnp) - after($pnct) - $pnct))

-> trainwhere($this - punctuation)
-> feed(outl, id(this, $this) + attr(this, outl, $outl))
-> feed(outr, id(this, $this) + attr(this, outr, $outr))

# Augmentation
-> augmentation(
  # Nodes
  id(this, $this) + id(pnct, $pnct)
  + id(prevp, $prevp) + id(open, $open)
  + id(prevnp, $prevnp) + id(nextnp, $nextnp)
  + id(oldestl, $oldestl) + id(oldestr, $oldestr)

  # Nodes modelled by 'lnode' distribution
  + concat(setof($n, this|pnct|prevp, attr($n, lex, val(lexeme, $n)) + attr($n, dtype, etype(out(deep, $n))))
  + attr($n, stype, etype(out(surface, $n)))
  + attr($n, local, out(deep, $n) + out(surface, $n))))

  # Nodes modelled by 'dtype' distribution
  + concat(setof($n, prevnp|nextnp|oldestl|oldestr, attr($n, dtype, etype(out(deep, $n))))

  # Outer peripheries for $this
  + attr(this, outl, $outl)
  + attr(this, outr, $outr)
)

# Variables and hierarchies
-> c(any, any)
-> given(pnct, any)
-> hierarchy(any, lex, hierarchy_lexeme)
-> hierarchy(any, dtype|stype, hierarchy_edge)

# Prior distributions
Appendix A. DG language model

\[
\begin{align*}
& \text{-> cnew\_prior(prob(lnode, rename(pnct, this, subaug(pnct, any, aug()))))} \\
& \text{-> cgiven\_prior(} \\
& \quad \text{# Nodes modelled by lnode distribution} \\
& \quad \text{product($n$, this|prevp|open,} \\
& \quad \quad \text{prob(lnode, rename($n$, this, subaug($n$, lex|dtype|stype|local, aug())))}) \\
& \quad \text{# Nodes modelled by dtype distribution} \\
& \quad * \text{product($n$, prevnp|nextnp|oldestl|oldestr}, \\
& \quad \quad \text{prob(dtype, rename($n$, this, subaug($n$, dtype, aug())))}) \\
& \quad \text{# Outer peripheries} \\
& \quad * \text{prob(outl, subaug(this, outl, aug()))} \\
& \quad * \text{prob(outr, subaug(this, outl, aug()))} \\
\end{align*}
\]

\};

Distribution stype

\[
\begin{align*}
& \text{# stype($this$): surface role of node $this$ modelled by an} \\
& \text{# empirical distribution} \\
& \text{distribution(stype, [$this$],} \\
& \quad \text{empirical()} \\
& \quad \text{# Augmentation} \\
& \quad \text{-> augmentation(} \\
& \quad \quad \text{id(this, $this$)} \\
& \quad \quad \text{+ attr(this, stype, etype(out(landing, $this$)))}) \\
& \quad \text{# Hierarchy} \\
& \quad \text{-> hierarchy(any, stype, hierarchy\_edge)} \\
\end{align*}
\]

Distribution worder

\[
\begin{align*}
& \text{# worder($this$, $lsite$, $prevc$, $preva$, $nexta$, $nextc$): the} \\
& \text{# insertion of a landed node between two local complements and} \\
& \text{# twoneighbouring non-local complements (ie, landing frame} \\
& \text{# (...,$prevc$, ..., $preva$, $this$, $nexta$, ..., $nextc$))} \\
& \text{# modelled by an XHPMdistribution} \\
& \text{distribution(worder, [$this$, $lsite$, $prevc$, $preva$, $nexta$, $nextc$],} \\
& \quad \text{xhpm()}
\end{align*}
\]
# Training material constructed from $this for all nodes that
# have a landing site
-> train(
    # Find landing site for node and landing frame with
    # previously generated landed nodes
    var($lsite, out(landing, $this)),
    var($lframe, list(sort($n, val(linorder, $n),
        ($lsite | in(landing, $lsite))
        + where($n, lt(val(genorder, $n),
            val(genorder, $this)))))),
    var($npos, node2pos($this, $lframe)),
    nvar($pos, sequence(0, abs($lframe))),
    # Redefine $this to STOP if $pos != $npos
    var($this, ifelse($pos == $npos, $this, STOP)),

    # Find nearest locally landed complements
    var($prevc, last(member($lframe)
        - after(pos2node($pos, $lframe))) - $lsite),
    var($nextc, first(member($lframe)
        - before(pos2node($pos + 1, $lframe))) - $lsite),

    # Find nearest landed nodes between locally landed
    # complements
    var($preva, pos2node($pos, $lframe) - ($lsite | $prevc)),
    var($nexta, pos2node($pos + 1, $lframe) - ($lsite | $nextc))
)-> trainwhere(out(landing, $this))

# Augmentation
-> augmentation(
    id(this, $this) + id(lsite, $lsite)
    + id(prevc, $prevc) + id(nextc, $nextc)
    + id(preva, $preva) + id(nexta, $nexta)
    + concat(
        setof($n, this|lsite|prevc|preva|nexta|nextc, attr($n, lex, val(lexeme, $n))
        + attr($n, stype, etype(out(landing, $n)))
        + attr($n, dtype, etype(out(deep, $n)))
        + attr($n, local, abs(out(landing, $n) + out(deep, $n)))))

# Variables and hierarchies
-> c(any, any)
-> given(any-this, any)
-> hierarchy(any, lex, hierarchy_lexeme)
appendix_a_language_model

```c
-> hierarchy(any, dtype|stype, hierarchy_edge)

Prior distributions
-> cnew_prior(prob(lnode, subaug(this, any, aug())))
-> cgiven_prior(
 prob(landc,
 rename(prevc, this, subaug(prevc, any, aug())))
* prob(landc,
 rename(nextc, this, subaug(nextc, any, aug())))
* prob(landa,
 rename(preva, this, subaug(preva, any, aug())))
* prob(landa,
 rename(nexta, this, subaug(nexta, any, aug()))))
);
```
Appendix B

Danish summary

Status inden for forskningsfeltet

En af de vigtigste udfordringer datalingvistik står over for i dag, er at formulere modeller for menneskelig sprogprocessering som er tilfredsstillende ud fra både en lingvistisk, statistisk, datalogisk og psykologingvistisk betragtning — dvs. modeller som leder til: (a) lingvistisk tilfredsstillende analyser af sproglige konstruktioner og deres grammaikalitet; (b) gode statistiske estimator for forskellige lingvistiske konstruktioners relative frekvens; (c) hurtige og effektive algoritmer til at parse, generere og lære talt og skrevet sprog; og (d) modeller af menneskelig sprogprocessering der stemmer overens med de psykologingvistiske observationer.

Der er mange måder hvorpå en teori kan være utilstrækkelig i forhold til disse fire udfordringer. Mange af de bedste statistiske parsingmodeller er baseret på kontekstfri grammatik, som er primitiv ud fra et lingvistisk synspunkt. Mange af de bedste lingvistiske teorier (herunder GB, LFG, HPSG, TAG, CCG, og Word Grammar) er oprindeligt tænkt som regelbaserede teorier, hvor sandsynligheder og nytteværdier ikke spiller nogen rolle. Motiveret af behovet for disambiguering i parsing er mange af disse teorier senere blevet udstyret med sandsynlighedsmodeller der har ført til resultater på state-of-the-art niveau i statistisk parsing. Sandsynlighedsmodellerne i de regelbaserede teorier indeholder imidlertid ofte antagelser om statistisk uafhængighed som er forsimplede ud fra et lingvistisk synspunkt, hvilket bevirker at sandsynlighedsmodellerne sjældent har samme lingvistiske kvalitet som de underliggende formalismer.
Algoritmernes tidsforbrug er en udfordring i de fleste sofistikerede lingvistiske teorier, og selv inden for kontekstfri grammatik er de eksisterende parsere som regel begrænset til at parse præsegmenterede og prætokeniserede tekstsegmenter i sætningsstørrelse, hvor lav-polynomisk gennemsnitlig tidskompleksitet er nok til at sikre et tilstrækkeligt lavt tidsforbrug til at algoritmerne kan anvendes i praksis. Men efterhånden som forskningsfeltet skifter fokus til processering af diskurs og tale med robuste, massivt flertydige statistisk inducerede grammatikker, vil man få brug for at finde tidseffektive algoritmer til at parse generel, usegmenteret tekst og tale i diskursstørrelse — et problem som sandsynligvis kræver algoritmer med næsten-lineær gennemsnitlig tidskompleksitet for at sikre at algoritmerne er tilstrækkeligt hurtige til at kunne anvendes i praksis.¹

Det er fristende at ignorere de psykolingvistiske observationer af menneskelig sprogprocessering fordi vores viden på dette område er fragmenteret og ufuldstændig. Måske derfor har få lingvistiske og datalingvistiske teorier forsøgt at give en fyldestørende forklaring på de eksisterende psykolingvistiske observationer. Observationerne er imidlertid allerede nu tilstrækkeligt detaljerede til at udelukke mange modeller for menneskelig sprogprocessering. Observationerne giver dermed vigtig information om naturens løsning på de mange udfordringer som datalingvistikken står over for, og der er i feltet en uddannet forståelse for at psykolingvistik bør opfattes som et område der fortjener en større opmærksomhed.

I lingvistik og datalingvistik er man derfor nået langt med hensyn til den regelbaserede modellering af syntaktiske konstruktioner og deres grammatikalitet, mens man kun lige er begyndt til at forstå hvordan man modelleer syntaktiske konstruktioners frekvens og definerer grammatikalitet vha. frekvens; hvordan man parser usegmenteret tekst og tale i diskursstørrelse på en tidseffektiv måde; og hvordan man relaterer de lingvistiske modeller af sprogbrugere til de psykolingvistiske observationer af menneskelig sprogprocessering.

¹En $O(n^3)$ algoritme som har et rimeligt tidsforbrug ved sætninger med $n = 100$ kan være uanvendelig ved diskurser med $n = 100,000$. 
De opnåede resultater

Denne afhandling præsenterer en ny teori, *Diskontinuert Grammatik*, som vi mener har en chance for på længere sigt at kunne møde de lingvistiske, statistiske, datalogiske og psykolingvistiske udfordringer (a)–(d) vi netop har skitseret. Teorien modellerer hvordan mennesker repræsenterer lingvistiske analyser og grammatikker, og hvordan mennesker analyserer skrift og tale. Teorien indeholder også en metode til at inducere probabilistiske grammatikker fra lingvistisk annoterede korpora, hvilket er interessant både fra et lingvistisk perspektiv fordi det er første skridt mod en fuldstændig model for menneskelig sprogindlæring, og fra et teknologisk perspektiv på grund af de potentielle anvendelser i natursprogssystemer.


**Dependensformalismen og de tilknyttede lingvistiske analyser**

I stedet for at basere afhandlingen på en eksisterende syntaksformalisme, har vi udviklet en ny dependensbaseret formalisme. De fleste af vores designvalg har været dikteret af ønsket om at sikre det bedst mulige grundlag for seriel parsing med retteoperationer og for statistisk sprogmodellering. Vi har fx valgt et design baseret på dependensstruktur i stedet for frasestruktur fordi formalismer baseret på frasestruktur fører til unødvendigt komplicerede retteoperationer, dvs. til store retteafstande mellem konkur-rerende løsninger i flertydige sætninger.

De fleste af intuitionerne bag formalismen har vi overtaget fra andre syntaksformalismen: distinktionen mellem et kontinuert overfladetræ der bestemmer ordstillingen og et muligvis diskontinuert dybdetræ der bestemmer funktor-argument struktureren; distinktionen mellem komplementer og adjunkt; kompositionalitetsprincippet; ideen om at ordstillingen bestemmes af landingsstedet; principippet om opadgående flytning; ideen om flytningsrestriktioner (island constraints); brugen af fillere til at indkode sekundære dependenser; brugen af et produktivt leksikon med ned- arvning og leksikalske transformationer; osv. Mange af vores analyser af specifikke lingvistiske fænomener er inspireret af analyser der er blevet
foreslået inden for andre lingvistiske teorier, selv om indsigterne ofte er formulert på en anden måde pga. forskellene mellem de underliggende formalismer.

DG-formalismen adskiller sig dog også fra de fleste andre syntaksformaliser på vigtige områder: fx ved dens opfattelse af grammatikker som nyttefunktioner opbygget ud fra sandsynlighedsmodeller eller brydbare lingvistiske restriktioner; ved dens lingvistisk motiverede inventar af omkostningsoperatører; ved detaljerne i dens teori om flytninger og flytningsrestriktioner; ved dens analyse af elliptiske koordineringer, parasitiske gaps, tegnsætning, morfologi, samt leksikalske transformationer i passiver og ekspletiver; ved dens dynamiske trækfunktioner og tidsafhængige omkostningsfunktioner; og ved dens opfattelse af diskursstruktur, syntaktisk struktur og morphologisk struktur som en samlet dependensstruktur supplere med anaforiske relationer.

I afhandlingen har vi argumenteret for at formalismen kan håndtere en bred vifte af lingvistiske fænomener, herunder forskellige ordstillingssfænomener (topikaliserering, ekstraposition og scrambling), filler-konstruktioner (kontrol, relativ og parasitiske gaps), elliptiske koordineringer (sharing og gapping), tegnsætning, diskursstruktur og anaforer, samt leksikalske alternationer og andre morfologiske aspekter. Vi har vist at grammatical-ken enten kan specificeres vha. manuelt skrevne regler eller, endnu bedre, vha. en probabilistisk grammatik induceret ud fra en træbank og en probabilistisk sprogmodel med samme forklarende variable som i en regelbaseret grammatik. Vi har dermed sandsynliggjort at teorien kan føre til tilfredsstillende lingvistiske analyser, vores første desideratum for en lingvistisk teori.

**Den lokale optimalitetsparser**

I stedet for at anvende en eksakt parsingalgoritme hvor tidseffektiviteten sikres ved at begrænse de lingvistiske udtryksmuligheder i syntaksformalismen eller den probabilistiske sprogmodel, har vi argumenteret for at det er bedre at bruge en hurtig, heuristisk parsingalgoritme som kan kombineres med vilkårligt komplekse sprogmodeller, men med en risiko for indimellem at ende med en analyse der ikke er globalt optimal (dvs. en garden-path analyse). Vi har argumenteret for at denne risiko ikke er så stor som den umiddelbart kan virke, idet flertydigheder ofte er lokale, dvs. konkur-rerende analyser i en globalt eller lokalt flertydig konstruktion sjældent
afviger fra hinanden med mere end 3 dependenser.

Vi har vist at det er muligt at finde heuristicke parsingalgoritmer med de ønskede egenskaber. Vi har foreslået en inkrementel seriel parsingalgoritme med retteoperationer, kaldet lokal optimalitetsparsing, som konstruerer et vha. en sekvens af lokalt optimale strukturmudifice-r rende operationer som kun berører et lille antal knuder i hvert skridt. Vi har foreslået forskellige familier af parsingoperationer, så som $k$-connect, $k$-displace og $k$-error, og argumenteret for at $k$-error synes at være en brugbar basis for lokal optimalitetsparsing. Vi har vist et lokal optimalitetspar-sing med $k$-error har værstealds tidskompleksitet $O(n \log^{3k+1} n)$ i et scena- rie med flytningsrestriktioner og balancerede grafer, og $O(n^{k+1} \log^{2k+1} n)$ i et scenarie uden flytningsrestriktioner — dvs. lokal optimalitetsparsing fører til næsten-lineær parsing, men flytningsrestriktioner er nødvendige for at opnå den næsten-lineære opførsel. Hvis vores modell er sand, forklarer dette hvorfor flytningsrestriktioner findes universelt i alle sprog. Vi har også skitseret hvordan lokal optimalitetsparsing kan udvides til at håndtere segmentering, morfologisk analyse og talt dialog mellem flere sprogbrugere.

For at undersøge teoriens psykolingvistiske plausibilitet har vi gennem-gået de psykolingvistiske eksperimenter som har været anført som argu- menter imod kernedrevet parsing. Vi har vist at selv om DG-parseren er kernedrevet, kan den vha. midlertidige landingssteder forfines på en måde som kan forklare de psykolingvistiske observationer. På dette grundlag har vi argumenteret for at der findes en familie af kernedrevne parsere som stadig fortjener seriøs overvejelse som psykolingvistiske modeller for parsing, ikke mindst fordi det er vanskeligt at designe prædiktive, ikke-kernedrevne parsere så de altid laver de rigtige forudsigelser.

Vi har dermed vist at det er muligt at konstruere en heuristic parsingalgoritme med en næsten-lineær værstealds tidskompleksitet, og at denne algoritme er psykolingvistisk adækvat, i det mindste med hensyn til de psykolingvistiske eksperimenter vi har undersøgt.

**Den probabilistiske sprogmodel**

Vi har foreslået en probabilistisk sprogmodel for DG. Selv om modellen er inspireret af de generative sprogmodeller for kontekstfrie grammatikker foreslået af Eisner (1996), Collins (1997) og Charniak (2000), er der vigtige forskelle. DG-modellen inkluderer først og fremmest specialiserede delmo-
deller for fænomener som ikke modelleres direkte i CFG-modellerne, som fx diskontinuert ordstilling, sekundære dependenser, gapping-koordina-
tioner, tegnsætning, anaforer og dybe rødder. Genereringen af ordstilling er heller ikke koblet til genereringen af komplementer og adjunkter. Endel-
lig er den statistiske estimationsmetode primært baseret på XHPM-estima-
tion med empiriske a-priori fordelinger, i stedet for på empirisk estimation med linær interpolation eller andre back-off metoder.

**Den statistiske XHPM estimationsalgoritme**

De fleste lingvistiske entiteter — som fx leksemer, dependensroller, onto-
logiske klasser, bøjninger, osv. — kan organisere vha. klassifikationshie-
rarkier, og lingvister formulerer rutinemæssigt deres analyser vha. de ab-
strakte klasser i disse hierarkier. De eksisterende estimationsmetoder i sta-
tistiske sprogmodeller er ikke desto mindre i overvejende grad baseret på
empiriske estimatorer som ikke kan drage fordel af de abstrakte klasser som hierarkierne tilbyder.

Vi har derfor foreslået en ny familie af statistiske fordelinger, kaldet
HPM- og XHPM-fordelinger, som kan modellere betingede stokastiske va-
riable med en blanding af hierarkisk organiserede variable, kontinuerte variable, empiriske variable og variable med arbitrær fordeling. XHPM-
fordelinger kan opfattes som korrektioner til a-priori fordelinger der flyt-
ter sandsynlighedsmasse til områder hvor den empiriske sandsynlighed er
signifikant højere end a-priori fordelingen foreskriver. A-priori fordelingen
benyttes derefter til at distribuere sandsynlighedsmassen mellem de
enkelt udfald i hvert område. Områderne er defineret vha. restklasser af
formen \( c_0 \cap (c_1 \cup \ldots \cup c_n) \) hvor \( c_0, \ldots, c_n \) er klasser i hierarkierne.

Den estimationsmetode som Li and Abe (1998) har foreslået, er et re-
striktivt specialtilfælde af HPM-fordelinger hvor hierarkiet er et træ i ste-
det for en generel orienteret acyklik graf, hvor a-priori fordelingen er uni-
form i stedet for arbitrær, og hvor alle områder er defineret som klasser i
hierarkiet i stedet for som generelle restklasser.

**Den aksiomatiske model af sprogbrugere**

Vi har foreslået en aksiomatiser model for menneskelig kommunikation
hvor en sprogbruger er i stand til at sammenligne den relative velformet-
ghed af to vilkårlige samlinger af lingvistiske analyser. Givet et enkelt, ling-
Appendix B. Danish summary

Vistisk plausibelt sæt af antagelser om hvordan sprogbrugeren sammenligner disse samlinger af analyser, har vi bevist at sprogbrugerens underliggende præferenceordning opfylder nytteforetrækkernes aksiomer og derfor kan udtrykkes vha. en nyttefunktion. Dette bevis har vigtige teoretiske konsekvenser fordi det viser at hvis vores aksiomatiske model er en god idealisering af sprogbrugerens adfærd, så kan menneskelige grammatikker indkodes vha. nyttefunktioner, med nyttefunktioner defineret vha. sandsynlighedsmodeller som et særligt interessant specialetilfælde. Kvantitative modeller af menneskeligt sprog er således ikke blot nødvendige fra et teknologisk synspunkt, men bør også spille en central rolle i teoretisk lingvistik.

Svagheder

Der er en række svagheder i denne afhandling som eksterne begrænsninger har forhindret mig i at udbedre. Den mest alvorlige svaghed er manglen på en maskinel implementering som kan bruges til at evaluere teorien med hensyn til dens vistiske og datalogiske egenskaber; i stedet har jeg kun lavet en detaljeret skitse for den maskinelle implementering og skrevet de første 27.000 liniers kildekode i DTAG-programmet. Selv om vistiske teorier bør kunne eksistere en vis tid uden maskinel implementering og evaluering, håber jeg engang at kunne leve op til mine egne idealer i denne henseende.


Vejen frem

Der er mange emner som ikke er blevet berørt i denne afhandling. Men den syntaksformalisme vi har foreslået, ser ud til at besidde nogle af de ultimative egenskaber som vi opstillede i begyndelsen af resumeet: (a) DG-
formalismen lader til at være en brugbar ramme for den syntaktiske beskrivelse af menneskelige sprog; (b) den lader til at være en brugbar ramme til at formulere lingvistisk adækvate probabilistiske sprogmodeller; (c) den kan kobles med en parsingalgoritme med næsten-lineær tidskompleksitet; og (d) parsingmodellen synes at være kompatibel med i det mindste nogle af de psykolingvistiske observationer af menneskelig parsing. Vi tror derfor at den syntaksformalisme vi har foreslået i denne afhandling kan være et skridt i den rigtige retning som fortjener yderligere udforskning.
Bibliography


M. Collins. Three generative, lexicalized models for statistical parsing. In P. R. Cohen and W. Wahlster, editors, *Proceedings of the Thirty-Fifth Annual Meeting of the Association for Computational Linguistics and Eighth Confer-


M. Johnson. Learning and parsing stochastic unification-based grammars.


M. T. Kromann. DTAG treebank tool v. 0.8, 2005.


M. Meteer, A. Taylor, R. MacIntyre, and R. Iyer. Dysfluency annotation


C. Samuelsson. Relating Turing’s formula and Zipf’s law. In Proceedings of the 4th Workshop on Very Large Corpora, Copenhagen, Denmark, 1996.


A. Stolcke. *Bayesian learning of probabilistic language models*. PhD thesis,


B. Webber, M. Stone, A. Joshi, and A. Knott. Anaphora and discourse struc-


Index

Abeillé and Rambow (2000), 17, 71
Aho et al. (1987), 10
Allwood (1976), 93
Aoshima et al. (2003), 319, 328
Asher (1993), 170
Asher (1999), 164
Asher (forthcoming), 162, 164, 166, 167
Böhmová et al. (), 200, 201
Bader and Lasser (1994), 319, 322, 323, 326
Baldridge and Lascarides (2005), 162, 164, 165, 167
Barron et al. (1998), 225
Basu et al. (2002), 226
Bech (1970), 18
Belz (2002), 238
Bever (1970), 18
Bick (2000), 351
Bick (2003), 201
Biggs (1989), 16
Bod and Kaplan (2003), 19
Bod (1995), 19
Bod (1996), 19
Bod (1998), 8
Borsley (1991), 93, 94
Borsley (1996), 57
Bouma et al. (2001), 71, 73
Brants et al. (2002), 200, 201
Breiman et al. (1984), 224
Bresnan (2001), 70
Brew (1995), 8
Briscoe et al. (1993), 41
Buch-Larsen et al. (2005), 100
Carlson and Marcu (2001), 162, 163, 166
Carlson et al. (2003), 162
Champernowne (1937), 100
Champernowne (1952), 100
Charniak (2000), 264, 338, 348, 391
Chomsky and Halle (1968), 197
Chomsky (1957), 8
Chomsky (1965), 70
Chomsky (1982), 147
Cimiano and Handschuh (2003), 96
Collins (1997), 264, 269, 334, 335, 338, 348, 391
Costa et al. (2003), 19
Culicover and Postal (2001), 147
Dalrymple et al. (1994), 35, 70
Daniels and Meurers (2002), 18
Daum and Menzel (2002), 20, 23, 290, 301
Daum (2004), 103
Dikovsky (2001), 16
Duchier and Debusmann (2001), 71
Index

Duchier (2001), 71
Eisner (1996), 264, 348, 391
Engdahl (1982), 147
Engdahl (1983), 147
Fabb (1998), 185
Fellbaum (1998), 215
Ferreira and Henderson (1990), 295
Fodor and Ferreira (1998), 301
Foth et al. (2004), 338
Frazier and Rayner (1982), 19, 292
Freidin (1991), 70
Friedman and Fisher (1999), 235
Gazdar et al. (1985), 35
Gazdar (1981), 157
Gerdes and Kahane (2001), 71, 72
Gernsbacher (1994), 96, 333
Haegeman (1994/1991), 70, 149
Halmos (1974/1950), 208, 210
Hartmann (2000), 153, 154, 157–159
Helbig and Schenkel (1971/1969), xv
Helbig (1992), 57
Hellwig (2003), 35, 157
Heltoft and Hansen (2000), 92
Herstein and Milnor (1953), 109–111
Hill and Murray (2000), 173
Hockett (1955), 8
Hockett (1958), 197
Hopf et al. (2003), 21, 318
Hudson (1990), 32, 35
Hudson (1997), 95
Hudson (1998), 71
Hudson (2003), xv, 35, 62, 71, 91, 95, 126, 157
Hudson (2004), 126
Johnson and McGeoch (1997), 23
Johnson (2002), 157
Johnson (2003), 8
Jones (1997), 173
Jurafsky and Martin (2000), 267
König et al. (2003), 202, 203
Kager (1999), 8, 106
Kahane (1997), 155, 157
Kamide and Mitchell (1999), 319, 328, 329
Kamp and Reyle (1993), 98
Kandel et al. (1991), 6, 108
Keller (2000), 105
Kempen and Harbusch (2002), 19
Keson and Norling-Christensen (1998), 198, 247
Klein and Manning (2004), 334
Konieczny (1996), 319, 327
Kromann and Lynge (2004), 77, 198
Kromann et al. (2003), xv, 96, 126, 146, 173, 198, 201, 203
Kromann (1999a), 20, 71
Kromann (1999b), 57, 71
Kromann (2001), 20, 23, 71, 298, 305, 335, 336
Kromann (2002a), 104
Kromann (2002b), 104
Kromann (2003), 198
Kromann (2005), 198, 202, 203, 335
Lascarides and Asher (in press), 162
Lavie and Tomita (1996), 19
Lewis (1998), 20
Lewis (1999), 20, 301
Lewis (2000), 21
Li and Abe (1998), 222, 225, 232, 238, 349, 392
Li and Abe (1999), 222, 232, 273
Lieber (1980), 197
Lin (1965), 24, 26
Lombardo and Lesmo (1998), 157
Müller (2004), 35, 71
Mann and Thompson (1988), 162, 166
Manning and Schütze (1999), xv, 8
Manning (2003), 105
Marcus et al. (1994), 201
Marcus (1980), 19, 20
Marcu (2000), 162
Marcu (2003), 166
Matthews (1991), 197
Maxwell and Kaplan (1993), 17
Mecklinger et al. (1995), 319, 326, 327
Melcuk (1988), 35, 157
Merlo and Stevenson (2000), 19
Meteer et al. (1995), 172
Michaelis and Wartena (1997), 307
Michaelis and Wartena (1998), 307
Miller (1956), 21
Miyamoto et al. (1999), 319, 329–332
Munkres (1975), 121
Nerbonne et al. (1994), 135
Nerbonne (1994), 135
Neuhaus and Bröker (1997), 14, 17
Nivre and Nilsson (2005), 338
Nivre and Scholz (2004), 338
Nivre et al. (2004), 334, 335
Nivre (2003), 20
Nivre (2004), 20
Norberg (2004), 231
Nunberg (1990), 173, 178, 184
Papadimitriou and Steiglitz (1982), xv, 6, 10, 12, 13, 23, 24, 26
Papadimitriou (1994), 11, 13
Parikh (2000), 122
Parikh (2001), 122
Parker (1999), 147
Pearlmutter and Mendelsohn (2000), 21
Phillips and Lau (2004), 322
Polanyi et al. (2003), 162
Polanyi et al. (2004), 162
Polanyi (2003), 162, 166
Pollard and Sag (1994), xv, 35, 71, 147, 149, 157
Popper (1935/1982), xiii
Potts (2004), 151
Powers (1998), 278
Prince and Smolensky (1993), 106
Pustejovsky (1995), 57
Quinlan and Rivest (1989), 225
Rambow and Joshi (1994), 138–140
Ramsey (1931), 110
Reape (1994), 71, 72, 138
Rice (1988), 208
Rissanen (1978), 225
Roark (2003), 19
Ross (1967), 93, 306
Russell and Norvig (1995), 109
Sag et al. (1985), 157
Sampson (1998), 172
Samuelsson (1996), 278
Sapir (1921), 197
Sarkar and Joshi (1996), 157
Say and Akman (1997), 173
Schachter (1977), 154
Schneider et al. (2004), 338
Schneider (2003), 19
Schulz (2000), 20, 23
Simá’an (1996), 17
Somers (1987), 57
Sorace and Keller (2005), 105, 114
Spencer (1998), 188, 197
Staab (1995), 19
Steedman (1984), 140
Steedman (1987), 147
Steedman (1990), 157
Steedman (2000), 71
Stevenson and Smolensky (2005), 19, 108
Stevenson (1994), 19, 108
Stevenson (1998), 19
Stolcke (1994), 225
Sturt and Crocker (1998), 19
Sturt et al. (2003), 19
Tapanainen (1999), 338
Tesar (1995), xv, 8, 106
Tesnière (1953), 35
Trautwein (1994), 17
Trueswell and Tanenhaus (1994), 19
Vater (1978), 57
Vosse and Kempen (2000), 19, 22, 103, 108
Wareham (1998), 17
Webber et al. (1999), 170
Webber et al. (2003), 162, 166–168
Webber (2004), 162, 163
Wiese (1996), 197
Wolf and Gibson (2003), 166
Yamada and Matsumoto (2003), 20, 338
von Neumann and Morgenstern (1944), 5, 110, 122
absence, 90
acceptability, 104
acceptable, 105
activation, 103
active lexeme, 40
acyclic graph, 41
acyclicity condition, 215
adj-add, 302
adj-addx, 302
adjacency, 68
adjunct, 33, 51
adjunct frame, 54
adjunct island constraint, 94
affected node, 299
aframe, 54
aframes_from_source, 78
agent, 109
agreement, 91
algorithm, 10
ambiguity, 4
analysis, 4
analysis level distinction, 57
analysis space, 7
anaphor, 169
anaphoric extraction path, 170
antecedent, 169
antecedent edge, 169
any-time algorithm, 317
apparent uniformity, 245
approximate algorithm, 24
approximate matching, 284
arc graph, 32
argument, 54
augmentation, 254
auxiliary verbs, 144
average density, 223
average proximity ordering, 269
base lexeme, 191
Bayes’ law, 213
Bayesian estimator, 213
beam search, 19, 317
begin-mark, 174
best-first search, 317
best-improvement local search, 24
binary mark, 174
blame set, 299
blocking edges, 303
boundary filler, 82
boundary subsouce, 82
bracket absorption, 178, 179
bracket mark, 173
branch-and-bound algorithm, 23
brute-force search, 12
bump, 226
bump model, 226
bump-MDL estimate, 226
bump-MDL posterior weight, 226, 232
bump-MDL prior weight, 226, 232

C∗, 220
CDOP, 16
certificate, 12
c-frame, 54
Champernowne distribution, 100, 232
channel, 3
chart parsing, 16
class algebra, 220
class intersection operation, 216
classes, 215
classical dependency graph, 32
communication, 3
comp-add, 302
comp-addx, 302
comparative, 79
compatible augmentations, 254
competence, 7
competitive attachment, 19
competitive inhibition, 19
complementizer gap constraint, 94
complement, 33, 51, 53
complement frame, 53
complement-adjunct distinction, 57, 58
complementizer, 94
complete ordering, 109
complex NP constraint, 94
complex submodel, 260
complexity classes, 12
composite type, 43
compositionality, 51
compounds, 185
computation, 10
concatenation of covers, 227
concatenation of augmentations, 254
concatenative morphological operator, 188
conditional mixed HPM distribution, 228
conditional probability, 213
connectedness condition, 215
connectionist parsing, 19
constraint, 9
weighted, 64
constraint satisfaction algorithm, 9
constraint satisfaction problem, 9
context, 3, 51
contextual parameter, 51
continuous dependency, 34
Continuous Dependency-based Optimality Parsing problem, 16
continuous edge, 41
continuous graph, 41
continuous surface tree, 60
control, 144
coordinate structure constraint, 155, 159
corpus, 113, 115
corpus model, 109, 113
corpus set, 115
corpus space, 115
<table>
<thead>
<tr>
<th>Term</th>
<th>Page Numbers</th>
</tr>
</thead>
<tbody>
<tr>
<td>cost, 88, 256</td>
<td></td>
</tr>
<tr>
<td>dynamic, 98</td>
<td></td>
</tr>
<tr>
<td>static, 98</td>
<td></td>
</tr>
<tr>
<td>cost function, 88</td>
<td></td>
</tr>
<tr>
<td>cost measure, 5, 6</td>
<td></td>
</tr>
<tr>
<td>cost polynomial, 106</td>
<td></td>
</tr>
<tr>
<td>cover operation, 227</td>
<td></td>
</tr>
<tr>
<td>coverage, 19</td>
<td></td>
</tr>
<tr>
<td>credibility factor, 231</td>
<td></td>
</tr>
<tr>
<td>credibility theory, 231</td>
<td></td>
</tr>
<tr>
<td>credibility weight function, 231</td>
<td></td>
</tr>
<tr>
<td>cross-serial dependencies, 137</td>
<td></td>
</tr>
<tr>
<td>cyclic graph, 41</td>
<td></td>
</tr>
<tr>
<td>D-structure, 70</td>
<td></td>
</tr>
<tr>
<td>Danish Dependency Treebank, 77, 198</td>
<td></td>
</tr>
<tr>
<td>Data-Oriented Parsing, 19</td>
<td></td>
</tr>
<tr>
<td>DDOP, 14</td>
<td></td>
</tr>
<tr>
<td>DDSP, 14</td>
<td></td>
</tr>
<tr>
<td>DDT, 198</td>
<td></td>
</tr>
<tr>
<td>deep edge, 52</td>
<td></td>
</tr>
<tr>
<td>deep forest, 52</td>
<td></td>
</tr>
<tr>
<td>deep gapping tree, 83</td>
<td></td>
</tr>
<tr>
<td>deep graph, 52</td>
<td></td>
</tr>
<tr>
<td>deep movement, 72</td>
<td></td>
</tr>
<tr>
<td>deep source tree, 83</td>
<td></td>
</tr>
<tr>
<td>deep tree, 52</td>
<td></td>
</tr>
<tr>
<td>deep upwards movement principle, 63</td>
<td></td>
</tr>
<tr>
<td>deep well-formedness, 55</td>
<td></td>
</tr>
<tr>
<td>deep yield, 53</td>
<td></td>
</tr>
<tr>
<td>default, 42, 151</td>
<td></td>
</tr>
<tr>
<td>default argument, 53</td>
<td></td>
</tr>
<tr>
<td>defective language model, 255</td>
<td></td>
</tr>
<tr>
<td>degenerate HPM, 226</td>
<td></td>
</tr>
<tr>
<td>degenerate partition, 226</td>
<td></td>
</tr>
<tr>
<td>degree, 316</td>
<td></td>
</tr>
<tr>
<td>density, 209</td>
<td></td>
</tr>
<tr>
<td>dependency, 51</td>
<td></td>
</tr>
<tr>
<td>dependency analysis, 31</td>
<td></td>
</tr>
<tr>
<td>dependency edge, 52</td>
<td></td>
</tr>
<tr>
<td>dependency graph, 31, 40</td>
<td></td>
</tr>
<tr>
<td>general, 40</td>
<td></td>
</tr>
<tr>
<td>dependency theory, 31</td>
<td></td>
</tr>
<tr>
<td>dependency tree, 52</td>
<td></td>
</tr>
<tr>
<td>dependent, 51</td>
<td></td>
</tr>
<tr>
<td>derivational morphology, 195</td>
<td></td>
</tr>
<tr>
<td>determiner, 126</td>
<td></td>
</tr>
<tr>
<td>DG graph, 40</td>
<td></td>
</tr>
<tr>
<td>DG modelling language, 256</td>
<td></td>
</tr>
<tr>
<td>dialogue, 171</td>
<td></td>
</tr>
<tr>
<td>dip, 226</td>
<td></td>
</tr>
<tr>
<td>directed edge, 40</td>
<td></td>
</tr>
<tr>
<td>disambiguating region, 29</td>
<td></td>
</tr>
<tr>
<td>discontinuous dependency, 34</td>
<td></td>
</tr>
<tr>
<td>Discontinuous Dependency-based Optimality Parsing problem, 14</td>
<td></td>
</tr>
<tr>
<td>discontinuous edge, 41</td>
<td></td>
</tr>
<tr>
<td>discontinuous graph, 41</td>
<td></td>
</tr>
<tr>
<td>discourse phenomena, 162</td>
<td></td>
</tr>
<tr>
<td>distance, 68</td>
<td></td>
</tr>
<tr>
<td>distribution, 208, 209, 260</td>
<td></td>
</tr>
<tr>
<td>domain union, 72</td>
<td></td>
</tr>
<tr>
<td>dominance, 41</td>
<td></td>
</tr>
<tr>
<td>dominance operator, 95</td>
<td></td>
</tr>
<tr>
<td>dominated, 95</td>
<td></td>
</tr>
<tr>
<td>DRT, 98</td>
<td></td>
</tr>
<tr>
<td>DTAG, 43</td>
<td></td>
</tr>
<tr>
<td>DTAG methods</td>
<td></td>
</tr>
<tr>
<td>aframe, 54</td>
<td></td>
</tr>
<tr>
<td>cframe, 54</td>
<td></td>
</tr>
<tr>
<td>dominated, 95</td>
<td></td>
</tr>
<tr>
<td>fframe, 75, 81</td>
<td></td>
</tr>
<tr>
<td>get, 43</td>
<td></td>
</tr>
<tr>
<td>getd, 47</td>
<td></td>
</tr>
</tbody>
</table>
iframe, 61
listof, 45
set, 43
setd, 47
super, 43
type, 43

DTAG treebank tool, 202
dynamic cost, 98
dynamic cost operator, 102
dynamic error node, 299
dynamic feature function, 46
dynamic inheritance lexicon, 46
dynamic inherited feature function, 46
dynamic programming, 16, 23
edge, 40
edge label, 53
edge-increasing parsing operation, 300
edge-monotonic parsing operation, 300
edit distance, 30
editing adjunct, 172
elementary cover operation, 227
empirical estimator, 210
empty subject coordination, 153
end-mark, 174
equivalent class expressions, 220
error, 334
error cost, 299
error node, 299
error-initiated $k$-connect operation, 297
estimation procedure, 254
evaluation procedure, 254
exact algorithm, 7, 18
exact matching, 284
exact neighbourhood, 25
expected gain, 101
expected unit gain, 102
expletives, 195
extraction path, 68, 94
for anaphora, 170
extraction procedure, 254
extraposition, 137
feature, 42
feature value, 42
features_from_source, 84
fframe, 75, 81
field, 136
fill-add, 303
fill-addx, 303
fill-chn, 303
fill-chnx, 303
fill-del, 302
filled gap effect, 328
gapping, 81
filler frame, 75
filler licensor, 74
filler object, 146
filler source, 74
filler triple, 74
filler well-formedness, 83
Finite-First Condition, 158
first-improvement local search, 24
frame, 49
free relative, 145, 146
functor, 51, 53
gadj-add, 304
gadj-addx, 304
gain, 101
ganging up effect, 114
gap-add, 303
gap-addx, 303
gap-par, 304
gapping, 152, 157
gapping coordination, 79
gapping dependent, 81
gapping filler, 81
gapping frames, 81
garden-path effect, 295
GB, 70
gcomp-add, 303
gcomp-addx, 303
general dependency graph, 40
generation, 4
generative adequacy, 334
gesture, 3
get, 43
getd, 47
glsite-add, 303
gov-del, 302
governor, 51
grammar, 7
grammar error, 334
grammatical, 105
grammatical relation, 31
grammaticality, 104, 105
greedy k-error operation, 317
group of speakers, 57
growth, 11
guided local search, 290
head, 32, 40
head value, 126
head-driven parsing, 318
hearer, 3
height, 316
heuristic algorithm, 7, 18
hierarchical lexicon, 42
hierarchical partition model, 223
hierarchy, 215
HPM, 223
degenerate, 226
HPM distribution, 223
HPSG, 70
human communication, 3
ill-formed, 105
ill-formedness measure, 5
immediate precession, 68
immediate subclass, 215
immediate succession, 68
immediate super partition, 223
inaudible input, 289
incompatible augmentations, 254
incremental parsing, 28, 290
incrementality, 293
induced HPM model, 224
inference, 98
inflectional morphology, 44, 192
inheritance, 42
inheritance lexicon, 42
inherited feature function, 42
inner punctuation periphery, 177
input, 10
inaudible, 289
noise, 289
unknown, 289
internal filler, 82
internal subsourse, 82
internal filler, 84
interregnum, 172
intersection hierarchy, 218
intersection operation, 216
intersective hierarchy, 216
island, 170
island constraint, 93, 316
island constraints, 307
purpose, 307
Item-and-Arrangement tradition, 197
Item-and-Process tradition, 197
iterative deepening, 317

judgment, 104

k-add, 294
k-change neighbourhood, 26, 27
k-connect operation, 297
k-displace operation, 297
k-econnect operation, 297
k-edisplace operation, 297
k-error operation, 299, 310
k-rconnect operation, 297

landed node, 60
landing frame, 61
landing site, 60
landmark, 71
language learning, 57, 277
language level distinction, 57
language model, 255
defective, 255
language production, 3
language understanding, 3
language user, 7
left boundary, 69
left periphery, 69
lex-chn, 302
lexeme, 51
lexical alternation, 44
lexical matching, 284
lexical transformation, 188
lexicon, 42
lframe, 61
licensing gap, 148
likelihood, 211

linear adjacency, 68
linear distance, 68
Linguist-GRID.org, 104
linguistic coverage, 333
Linguistic Discourse Model, 162
linguistic survey, 104
listof, 45
local feature function, 42, 44
local feature value, 42
local garden-path, 29
local morphological operator, 189
local optimality parsing, 27
local optimality parsing with segmentation, 284
local search, 20, 24
    first-improvement, 234
locally optimal, 25
LOPS, 284
LOPS algorithm, 285
lottery, 112
low attachment, 96
lsite-add, 302
lsite-addx, 302
lsite-del, 302

Major Constituent Condition, 158
Marcus parser, 19
matching, 284
Maximal Contrast Principle, 159
maximum likelihood estimator, 211
MDL, 225
    prior weight, 225
MDL estimate, 225
meaning, 3
measurable function, 208
measurable space, 208
measurable subset, 208
measurable utility, 110
measure, 208
merging, 227
metric, 134
middle field, 136
minimal commitment model, 19
minimal continuous lifting, 66
minimal-cost solution, 6
Minimum Description Length, 225
misunderstanding, 3
mixed adjectival inflection, 62
mixture, 109
mixture set, 109
MLOPS, 290
MLOPS algorithm, 291
modal verb, 143
model parameters, 254
modifier, 51, 54
modifier scope, 53
Monte Carlo parsing, 19
Morgenstern, 5
morphological operator, 188
move α, 132
moved mass, 237
movement, 70
multi-channel local optimality parsing with segmentation, 290
multiple heads, 41
multiple inheritance, 42
neighbourhood, 24
next, 69
no\_dynamic\_iframes, 85
node filter, 96
noise, 3
noisy input, 289
non-active lexeme, 40
non-concatenative morphological operator, 188
non-concatenative morphology, 188
non-deterministic polynomial recognition problem, 12
non-resolvable cost function, 99
non-terminal class, 215
non-zero distribution, 208
NP, 12
NP analysis, 62
NP-attachment, 30
NP-complete, 13
NP-hard, 13
numeral, 125
object control, 144
obligatoriness, 90
obligatory adjunct, 52
observed outcome, 210
ontological hierarchy, 96
ontological type, 96
ontology, 96
optimal bump-MDL estimate, 226, 232
optimal solution, 6
Optimality Theory, 106
optimization algorithm, 7
optimization problem, 6
ordered cover, 223
ordering, 109
outcome, 209
outer punctuation periphery, 177
output, 10
overfitting, 210, 225
overgeneration, 132
P, 12
parallel trees, 83
parameter description length, 225
parasitic gap, 147, 148
Pareto distribution, 100
parser error, 334
parsing, 4
partial verb phrase, 135
partition, 223
degenerate, 226
partitioning, 227
passives, 195
PCFG parsing, 16
performance, 7
peripheral sharing, 152
Perl, 44
phrasal head, 51
phrasal value, 126
phrase, 32, 51
phrase-structure analysis, 31
poetry, 134, 135
point absorption, 178, 179
point mark, 173
point measure, 210
pointed edge, 47
pointed node, 47
polynomial transformation, 13
polynomial-time recognition problem, 12
possible outcome, 209
posterior weight, 224
PP-attachment ambiguity, 96
Prüfer symbol, 16
pragmatics, 98
precision, 10, 333
predictive parsing, 322
preference, 109
preliminary landing site, 319
presence, 90
prev, 69
principle of compositionality, 51
prior distribution, 213, 223
prior probability, 213
prior relative probability, 214
prior weight, 214, 224
prioritized inheritance, 42
prioritized multiple inheritance lexicon with defaults, 42
probabilistic model, 109
probability, 208
of graph, 255
of node, 255
probability measure, 208
probability space, 208
problem, 10
problem instance, 10
product hierarchy, 217
production, 3, 4
projective Champernowne distribution, 100
pronoun, 126
proper subsourse, 82
psycholinguistics, 333
punctuation
adjunct rule, 176
bracket rule, 183
realization rule, 178
word order rule, 181
punctuation mark, 173
punctuation periphery, 177
PVP, 135
quote transposition, 184
raising, 144, 145
random variable, 208
random vector, 209
rank function, 106
ranking, 106
rational agent, 109
real ambiguity, 334
recall, 333
recognition problem, 12
relative, 145
relative clause, 94
relative probability, 213
repair dependent, 172
reparandum, 172
replacement edge, 82
resolution time, 99
resolvable cost function, 99
resource-limited constraint satisfaction parsing, 19
resource-limited parallel parsing, 19
restriction hierarchy, 218
rhyme, 134
right boundary, 69
right frontier constraint, 170
right node raising, 152
right periphery, 69, 321
robustness, 277
roof edge, 319
root class, 215
root partition, 223
rooted \(k\)-connect operation, 297
running time, 10

S-structure, 70
scope ordering, 268
scrambling, 137
SDRT, 162
search space, 6, 9
secondary conjunct, 154
secondary dependent, 74
secondary governor, 73, 74
segmentation, 284
Segmented Discourse Representation Theory, 162

selectional restriction, 96
semantics, 96, 98, 167
separator, 174
serial parsing, 28
serial parsing with repair, 20, 28, 290
serial parsing without repair, 20, 28
set, 43
setd, 47
sharing, 152
signalled error, 299
simple filler, 77
simple submodel, 260
simple filler, 77
simplified dependency tree, 14
simplified weighted dependency grammar, 14
singular spine of extraction, 316
size of input, 11
song, 134, 135
sound, 3
source type, 44
space complexity, 11
space requirement, 10
sparse data problem, 211, 222
speaker, 3, 7
speaker intuition, 104
speaker level distinction, 57
speaker variation, 104
specifier, 33
speech error, 98, 277
speech repair, 172
speech signal, 3
spoken language, 171
src-add, 303
src-del, 302
static cost, 98
static error node, 299
steepest descent local search, 24
strict dominance, 41
strong adjectival inflection, 62
subclass, 215
subject condition, 94
subject control, 144
submodel, 254
submodel specification, 260
submodel type, 260
subordinate, 32, 40
subordinate wh-question, 94
subpartition, 223
subsource, 81
super, 43
super partition, 223
super_from_source, 79
supertype, 42
surface edge, 60
surface forest, 60
surface graph, 60
surface movement, 72
surface tree, 60
surface well-formedness, 63
surface yield, 68
survey, 104

temporal subgraph, 99
temporary landed node, 319
temporary landing edge, 319
temporary landing site, 319
terminal class, 215
text, 3
threshold, 99
time complexity, 11
time span, 99
tone indicator, 173
topicalization, 133
topological field theory, 71
total cost polynomial, 106
total ordering, 109
total weight, 14
transformation, 13
transformation function, 44
transformation type, 44
transformational inheritance lexicon, 44
transformed lexeme, 191
transformed type, 44
transposition, 311
transposition table, 317
Travelling Salesman Problem, 12
treebank error, 334
trochaic metric, 135
type, 41, 42
type, 43
type specification, 47
unacceptable, 105
unary mark, 174
underfitting, 225
undergeneration, 132
understanding, 3, 4
ungrammatical, 105
ungrammatical input, 277
uniform distribution, 208
unique root condition, 215
unknown input, 289
utility theory, 109

value, 42
variable_from_source, 78
verbal complex, 143
violable weighted constraint, 64
von Neumann, 5
von Neumann-Morgenstern theorem, 110
VP-attachment, 30
weak adjectival inflection, 62
weak garden-path effect, 295
weighted constraint, 64
well-formed, 105
depth graph, 55
dependency graph, 50
filler, 75
surface graph, 63
temporary landing edge, 319
wh-island condition, 94
wh-phrase, 94
wh-question, 94, 145, 146
word distance, 96
word order, 91
Xbar theory, 33
XHPM distribution, 228
XHPM estimator, 232
XHPM model, 232
yield, 41
depth, 53
surface, 68
yield-adjacency, 68
zero probability, 277
Zipf’s law, 278